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ABSTRACT 

The 2D and 3D QSAR of 30 compounds with type 1 diabetes inhibitors has been studied by using semi-empirical 

methods. The parametrization (PM6) method is employed as the basic set to optimize the derivatives using Spartan 

14 and PaDEL v2.20 are used to calculate the chemical descriptors. To obtain a reliable QSAR model, the data 

set using the Kennard-Stone method to divide the derivatives into training set and test set comprising 21 and 9 

compounds, respectively. An optimal model for the training set with significant statistical quality was established. 

The same model was further applied to the test set pIC50 of the 9 compounds. In the 2D-QSAR study, the MLR 

analysis produced 2 models, where the best one is model 2 with SEE = 0.3227; r^2 = 0.7409; r^2 adjusted = 

0.6952; F = 16.20625. In the 3D-QSAR study, Atom-based fashion and pharmacophore-based fashion alignment 

were used. The results showed that CoMFA (uvepls) (q2 = 0.6897; r2 = 0.9999) have good stability and 

predictability. The internal validation indicated that CoMFA (uvepls) MIFs possess good predictive power than 

COMFA (ffdsel). The molecular docking study showed three (3) conventional hydrogen bonds with Arg97, 

Glu63, and Tyr159. Two carbon-hydrogen bonds with Ala69 and His70. MD simulation (1ns) analysis on the 

docked compound 17 assisted in the further exploration of the binding interactions. Some crucial interactions like 

pi-pi-T-shaped and amide-pi-stacked were identified. Hydrogen bond interactions with Arg97, Tyr7, and Trp167, 

respectively, bind more closely to the ligand. These results can offer useful insights for future investigational type 

1 diabetes inhibitors. 

Keywords: Type 1 diabetes, 2D-3D QSAR, Open3DALIGN, Open3DQSAR, Docking simulation, Molecular 

Dynamic simulations. 
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Introduction 

Diabetes is a major public health issue that is rapidly spreading around the world [1]. Type 1 

diabetes (also known as insulin-dependent diabetes or juvenile diabetes) is most commonly 

diagnosed in adolescents, teens, and young adults, but it can strike anyone at any age [2]. Type 1 

diabetes is believed to be caused by an autoimmune reaction (when the body accidentally attacks 

itself) that kills the insulin-producing beta cells in the pancreas [3]. Insulin is a hormone that aids 

the entry of blood sugar into cells where it can be used for energy (or body buildup). Blood sugar 

cannot enter cells without insulin, and it accumulates in the bloodstream. High blood sugar harms 

the body and contributes to many of the signs and problems associated with diabetes. Early signs 

and symptoms include extreme thirst and excessive urination. More serious symptoms, such as 

fast, deep breathing, dry skin, and mouth, flushed face, fruity-smelling breath, headache, muscle 

weakness or aches, being very tired, nausea and vomiting, and stomach pain, can occur quickly if 

left untreated [2]. Hypoglycemia can be caused by too much insulin, and diabetic ketoacidosis can 

be caused by too little insulin. There is a diabetes epidemic going on right now. Diabetes 

prevalence was 8.0 percent in 2007 and is projected to increase to 7.3 percent by 2025, according 

to the International Diabetes Federation. Diabetes currently affects 246 million people (46 percent 

of whom are between the ages of 40 and 59), with the figure projected to increase to 380 million 

by 2025 (www.diabetesatlas.org). As per the fifth edition of the world diabetes atlas published by 

the International Diabetes Federation (IDF) in 2011, the total adult population in the age range of 

20-79 years is estimated to be 3-4 billion in 2011, with millions of people living with diabetes [5]. 

Research shows that there is a significant increase in the prevalence of diabetes, from 2013 to 2018 

which was 6.9% to 8.5% [6]. World health organization (WHO) anticipated that 347 million 
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individuals have blood sugar (diabetes), which is anticipated to be the seventh driving reason of 

deaths by 2030 [7], while Wild and his co-worker projected approximately 400 million cases in 

2030 contrasted with 171 million in 2000 [8, 9]. Drugs like metformin, SGLT2 inhibitors, and 

GLP1 receptor agonists have been prescribed to people with diabetes, unfortunately, these drugs 

have adverse effects such as heart failure, higher risk of urinary, genital infections, ketoacidosis, 

and gastrointestinal problem (such as nausea and a loss of appetite) on individuals [2]. However, 

all these drugs give only temporary relief and are associated with a lot of side effects. Apart from 

these side effects, reported compounds are less potent. Hence, great opportunities still present for 

computer-aided drug design in search of potent drugs and accordingly to obtain insights into the 

active site of an enzyme. Therefore, there is an urgent need to develop effective and safer 

alternative drugs for the prevention and treatment of type 1 diabetes. Lately, computer-aided drug 

design has been utilized to model not only biological activities,[10] but also chemical properties, 

docking, molecular simulations [11], and ADMET condition [12]. As a result, it is important to 

develop a 2D, 3D-QSAR and docking model for predicting the behavior of modeled compounds 

before their synthesis. A effective QSAR model not only aids in the understanding of relationships 

between structural features and biological activity of any class of compounds, but it also provides 

researchers with a comprehensive analysis of the lead compounds to be used in subsequent studies 

[13]. Furthermore, recognizing the mechanism of ligand-receptor interactions is critical in the 

development of drugs, and the molecular docking simulation approach is a good way to do so [11]. 

Molecular docking simulation is a statistical method for predicting the ability of active site residues 

to bind to particular receptor groups and evaluating the strength of interaction [12]. The drug 

research industry uses molecular docking to test the coupling of small molecules (inhibitors) to 

receptors (macromolecules) [13]. Using all-atom molecular dynamics (MD) simulations, confirm 
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the efficiency of hits bound to the binding site and construct the complex to determine the behavior 

of leads in complex structures [14, 15]. MD simulation is a sophisticated technique for observing 

the dynamics of all atoms in a system by simulating the action of molecules in a complex structure 

[12]. 

Materials and Methods 

For 2D/3D quantitative structure-activity relationship (QSAR), molecular docking, molecular 

dynamics simulations studies a series of 30 compounds with their IC50 (mM) were collected from 

a lately published study [2]. To minimize the skewness of the data collection, in vitro biochemical 

activities (IC50 (mM)) were translated into molar (M) range and then into corresponding pIC50 

values (i.e. pIC50 is the negative logarithm of IC50 (pIC50 = -log IC50)). These compounds' smile 

structures and their Pubchem CID numbers, experimental, and pIC50 are presented in Table 1. The 

molecular structure was sketched using MavinView software, and then, were minimized/optimized 

by the semi-empirical PM6 method included in the Spartan’14 v1.1.4 program. Thereafter, the 

molecular descriptors calculated with PaDEL-Descriptor [16] were subsequently subjected to 

variable reduction using a Data Pre-Treatment Tool (V-WSP Tool) [17]. Using the Kennard-Stone 

(http://dtclab.webs.com/software-tools) methodology, the data set was divided into two groups: 

training and test sets. The training set, which consisted of 21 (70%) molecules, was used for model 

production, while the test set, which consisted of 9 (30%) molecules, was used to avoid 

overtraining and assess the predictive power of the generated model using the best subset selection 

(BSS) multiple linear regression (MLR). 

Table 1. Smile structure, PubChem CID number, bioactivity, and docking results of the studied 

compounds 
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S/N Smile Structure CID IC50 value 

(mM) 

pIC50 Docking 

Score 

1 CCN1N=C(N=C2C(=O)N(C)
C(=O)N=C12)c3ccccc3 

647501 10.421 4.9821 -7.3 

2 OC(=O)[C@@H]1Nc2:c(O)
:c:c:c:c:2[C@H]3C=CC[C@
@H]13 

654089 8.35 5.0783 -7.5 

3 [O-
][n+]1:o:n:c(C(=O)c2:c:c:c:
s:2):c:1C(=O)c3:c:c:c:s:3 

573747 1.24 5.9066 -6.8 

4 OC(=O)CCCNc1:c:c(N2CCC
3(CC2)OCCO3):c4:n:o:c5c
6:c:c:c:c:c:6C(=O)c:1:c:4:5 

3239469 61.947 4.2080 -8.8 

5 CN1N=CN=C2C(=O)N(C)C(
=O)N=C12 

66541 1.24 5.9066 -6.3 

6 CN1N=C(C)N=C2C(=O)N(C
)C(=O)N=C12 

460747 1.24 5.9066 -6.8 

7 CC(C)(CS(=O)(=O)[O-
])NC(=O)CC[N+](C)(C)CCO 

1973720 4.076 5.3898 -4.9 

8 OC(=O)CCCN1C(=S)S\C(=C
\c2:o:c(:c:c:2)c3:n:c4:c:c:c
:c:c:4:s:3)\C1=O 

2012947 4.773 5.3212 -8.1 

9 CC(=O)c1:c:c:c2N[C@H]([
C@@H]3C[C@@H](Sc4:c:
c:c:c:c:4[N+](=O)[O-
])[C@H](Cl)[C@H]3c:2:c:1
)C(=O)O 

3116376 57.855 4.2377 -8.4 

10 CCc1:n:n:c(NS(=O)(=O)c2:
c:c:c(NC(=O)C3=Cc4:c:c:c:
c(CC=C):c:4OC3=O):c:c:2):
s:1 

1714876 9.427 5.0256 -9 

11 COc1:c:c:c:c(\C=N/NC(=O)
c2:c:c3:c:c(:c:c:c:3:s:2)[N+
](=O)[O-]):c:1O 

86261486 13.108 4.8825 -7.6 

12 CCOc1:c:c(\C=C\2/NC(=O)
NC2=O):c:c(Br):c:1OCc3:c:
c:c(:c:c:3)C(=O)O 

1334608 2.394 5.6209 -8.2 

13 Oc1:c:c:c(:c:c:1)C(=O)N\N
=C\c2:c:c:c(OCC(=O)Nc3:c
:c:c:c(:c:3)[N+](=O)[O-
]):c:c:2 

9564046 37.577 4.4251 -7.5 

14 CCOc1:c:c(\C=N/NC(=O)c
2:c:c:c(:c:c:2)c3:c:s:c(Nc4:
c:c:c(C):c:c:4):n:3):c:c:c:1
OCC(=O)O 

9595043 4.683 5.3295 -7.5 



International Journal of New Chemistry, Vol. 9, Issue 4 pp. 351-382                      E.I. Edache et al 

  
 

 356 

15 COc1:c:c:c(:c:c:1)\N=C\2/
S\C(=C\c3:c:c:c(OCC(=O)O
):c:c:3)\C(=O)N2CCc4:c:[n
H]:c5:c:c:c:c:c:4:5 

5995173 1.24 5.9066 -8.3 

16 CCOC(=O)c1:s:c2N=C3N(C
=C(C=C3SCCC(=O)O)C(=O)
c4:c:c(OC):c:c:c:4O)C(=O)
c:2:c:1C 

2545524 2.02 5.6946 -7.2 

17 Cc1:c(Cl):c:c:c:c:1NS(=O)(
=O)c2:c:c:c3N[C@H]([C@
@H]4CC=C[C@@H]4c:3:c
:2)c5:c:c:c(:c:c:5)C(=O)O 

2975144 48.532 4.3140 -9.3 

18 OC(=O)c1:c:c:c(COc2:c:c:c
(\C=C(\C#N)/c3:c:c:c:c(F):
c:3):c:c:2Br):c:c:1 

2229326 15.654 4.8054 -8 

19 CCN1N=C(\C=C/c2:c:c:c:c:
c:2)N=C3C(=O)N(C)C(=O)
N=C13 

5756371 11.704 4.9317 -7.5 

20 CCCC1=NN(C)C2=NC(=O)
N(C)C(=O)C2=N1 

3164059 1.598 5.7964 -7.2 

21 COc1:c:c:c(Cl):c:c:1C(=O)
Nc2:c:c:c:c(:c:2)c3:c:c:c4:
n:n:c:n:4:n:3 

7217786 38.456 4.4150 -8.4 

22 OC(=O)COc1:c:c:c(\C=N/N
C(=O)c2:c:c:c(:c:c:2)c3:c:s:
c(Nc4:c:c:c(Cl):c:c:4):n:3):
c:c:1 

9595032 1.24 5.9066 -7.9 

23 N\C(=N\N=C/c1:c:c:c2OC
Oc:2:c:1)\S[C@H]3CC(=O)
N(C3=O)c4:c:c:c(:c:c:4)C(=
O)O 

25250764 8.58 5.0665 -8.5 

24 OC(=O)c1:c:c:c:c(:c:1)n2:c
:c:c:c:2\C=C/3\NC(=O)N(C
3=O)c4:c:c:c(Cl):c:c:4 

6104167 4.404 5.3562 -7.9 

25 COc1:c:c:c(\C=C/2\SC(=S)
N(CCC(=O)Nc3:c:c:c(:c:c:3
)C(=O)O)C2=O):c:c:1OC 

1587127 2.755 5.5599 -7.9 

26 OC(=O)c1:c:c:c:c(NC(=O)\
C(=C/c2:c:c:c(OCc3:c:c:c(C
l):c:c:3):c:c:2)\C#N):c:1 

1516220 6.424 5.1922 -7.9 

27 Cc1:c:c:c(\C=C/C2=Nc3:s:
c(C(=O)O):c(C):c:3C(=O)N
2):c:c:1[N+](=O)[O-] 

8853383 11.188 4.9512 -7.6 

28 CCOc1:c:c(\C=C(\C#N)/C(
=O)Nc2:c:c:c:c(:c:2)C(=O)
O):c:c:c:1OCc3:c:c:c(Br):c:
c:3 

2354598 1.24 5.9066 -7.7 
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29 Cc1:c:c:c(:c:c:1NC(=O)c2:c
:c:c3C(=O)N(C(=O)c:3:c:2)
c4:c:c:c(:c:c:4)[N+](=O)[O-
])C(=O)O 

2867365 14.971 4.8247 -8.7 

30 COc1:c:c:c(NC(=O)CN2C(=
O)\C(=C\3/SC(=S)N(CCC(=
O)O)C3=O)\c4:c:c:c:c:c2:4
):c:c:1 

1889464 13.791 4.8604 -7.6 

 

Molecular alignment 

In the building of the CoMFA (FFDSEL and UVEPLS) model, the arrangement of the chemical 

structure is of crucial importance [Edache et al., 2020]. The exactness of the CoMFA model 

estimates and the stability of the polyhedron map is highly dependent on the structural arrangement 

of the molecules [18, Edache et al., 20]. The structure of the most active stable compound was 

used as an archetype for superimposition, assuming that it is the most biologically active 

conformation at the active receptor site. In Open3DALIGN [19], the fragment was chosen from 

the Atom-based fashion and pharmacophore-based fashion alignment method and the majority of 

the molecules had been matched with it. Because of its high O3A score (see Table 2), compound 

17 was chosen as the template to align other compounds in Figure 1. 

Table 2. Open3DALIGN O3A_Score for each compound 

Template       ID        Conformer            O3A_SCORE Template       ID        Conformer            O3A_SCORE 

1 1 1 3273.04 16 16 1 3342.30 

2 2 1 2393.27 17 17 1 3343.85 

3 3 1 2382.93 18 18 1 3057.57 

4 4 1 3098.14 19 19 1 3298.92 

5 5 1 2967.11 20 20 1 3141.24 

6 6 1 3100.33 21 21 1 2813.51 
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7 7 1 2471.96 22 22 1 2786.13 

8 8 1 2885.83 23 23 1 3073.36 

9 9 1 2982.02 24 24 1 2983.43 

10 10 1 3068.17 25 25 1 3149.42 

11 11 1 2618.28 26 26 1 3101.67 

12 12 1 3064.03 27 27 1 2915.27 

13 13 1 2888.78 28 28 1 3111.94 

14 14 1 2977.79 29 29 1 3169.11 

15 15 1 3110.59 30 30 1 3103.32 

 
Figure 1. Superposition of 30 molecules in the training collection, including substances, and test 

collection on the prototype compound 17. 
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The 3D descriptors were used as independent variables and the pIC50 (biochemical activity) as 

the dependent variable to derive 3D-QSAR models. Open3DQSAR is used today for high-

throughput MIFs analysis for pharmacophore exploration [20]. This Open3DQSAR approach can 

be used to evaluate pharmacophores and formulate drugs based on ligand [24]. Recent studies 

show that the research findings using this approach are similar to CoMFA and CoMSIA [18]. For 

Open3DQSAR research, Molecular Interaction Fields (MIFs) for steric and Coulomb interactions 

were calculated using a grid box with a phase size of 2Å and a distance of 5Å [18], similar to the 

CoMFA report. These MIF descriptors were pre-treat maximum and minimum cut-offs (level = 

±30), zeroing (level = 0.05), standard deviation cut-off (level = 2.0), N-level variable exclusion, 

and block unscaled weighting (BUW). Finally, to compare the MIFs with the pIC50 operation, the 

fractional factorial design-PLS (FFDSEL) approach was employed. Using the uninformative 

variable elimination-partial least square (UVE-PLS) variable selection technique, the least 

informative variables were excluded from the model. 

Preparation of target proteins  

The 3D Structure of A “hotspot” for autoimmune T cells in type 1 diabetes (PDB code: 5HYJ) 

crystal structure [21] used in this study was extracted from the Protein Data Bank (PDB) of the 

RCSB (Research Collaboratory for Structural Bioinformatics). Using the Discovery Studio 2017 

R2 Client, the heteroatom was removed from the 5HYJ protein PDB files. The 5HYJ polypeptide 

chains (B to J) were deleted and only the Homo sapiens chain A was saved for further study as a 

PDB file format. T cell antigen receptor (TCR) 5HYJ chain A has been used successfully to 

monitor and discover unique molecules for the treatment of type 1 diabetes [21]. The resolution of 

this entry mentioned is 1.85 Å. 
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Molecular docking Simulations Setup 

We used the PyRx-Visual Screening Tool v0.8 docking program from the Scripps Research 

Institute. The Autodock Vina [26] was used to obtain the T cell [21] receptor protein's affinity 

energy and binding mode with the compounds (Table 1). The Drug Screening module is set with 

the Default parameters such as Exhaustiveness = 8, vina search space (center_x = 24.8398, 

center_y = -49.82, center_z = 103.4175), dimensions in angstrom (size_x = 47.1821511173, size_y 

= 55.8864878082, and size_z = 70.2009980774). For further investigation, the ligand validation 

with the least binding energy was chosen. The discovery studio client R7 program was used to 

image and analyze protein-ligand complexes. 

Molecular Dynamic Simulations Setup 

Molecular dynamics simulations are performed using VMD [22] and NAMD [23] and the 

CHARMM force field [24]. The CHARMM27 force field was used to calculate the interaction 

parameters. To measure the solvated protein, the periodic boundary condition was used and the 

device was immersed in a cubic water box of extended simple point charge water molecules. The 

protein was solvated with explicit water with 0.15M NaCl salt concentration for neutralization. To 

maximize the initial structure of the protein, minimization was performed. After that, the system 

temperature was steadily heated up by 100ps from 0 K to 310 K. Finally, at 310 K for 100ps with 

the NVT ensemble, the system was balanced. The system was simulated for 1ns (500,000 steps) 

of chemical time. The MD simulation and results from the analysis were performed on the DELL 

INSPIRON; Pentium® Dual-Core CPU T4500 @ 2.30GHz and 3GB of RAM, 64-bit-Operating 

System, x64-based processor. A full summary of the input parameters is given in the NAMD 

documentation (www.ks.uiuc.edu/Research/namd/). 

 

http://www.ks.uiuc.edu/Research/namd/
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Results and Discussion 

Best subset selection-multiple linear (BSS-MLR) regression techniques were used to pick the most 

important descriptors. Two models with a training set of 21 compounds (70%) and a test set of 9 

compounds (30%), were selected from the numerous built model, with three (3) descriptors, the 

next to the ratio of the five training molecules for each descriptor with low generality and 

prediction ability for the test set. With the selected descriptors, using the training data set, we 

developed the linear 2D-QSAR model and obtained the following equations (models 1 and 2), as 

shown below. Models 1 and 2 present this equation as well as its statistical parameters. The 

prediction results were obtained using the test set. 

Model 1 

pIC50 = 2.91569(+/-0.74036) - 0.66691(+/-0.21349) ATSC1e -0.01851(+/-0.00887) AATSC6m 

+6.85628(+/-2.56507) BCUTc-1h __________________________________________Model 1 

Parameters for Internal Validation: SEE = 0.3431; r^2 = 0.7072; r^2 adjusted = 0.6556; F = 

13.68798 (DF: 3, 17) 

Leave-One-Out (LOO) Result: Q2 = 0.6113; PRESS = 2.6563; SDEP = 0.3557 

 

Parameters for External Validation: RMSEP = 0.3160; Rpred^2 = 0.6157; Q2f1 = 0.6157; Q2f2 

= 0.5062 

 

Appropriate model requirements for Golbraikh and Tropsha: 

K = 1.0066; [(r^2-r0^2)/r^2] = 0.02222 OR* K’ = 0.99001; [(r^2-r'0^2)/r^2] = 1.53668 Passed    

 

Model 2 

pIC50 = 3.3212(+/-0.46284) - 0.02397(+/-0.008) AATSC6m +3.11153(+/-0.66862) GATS1e -

0.10704(+/-0.02624) nTRing _____________________________________________Model 2 

Parameters for Internal Validation: SEE = 0.3227; r^2 = 0.7409; r^2 adjusted = 0.6952; F = 

16.20625 (DF: 3, 17) 

Leave-One-Out (LOO) Result: Q2 = 0.6481; PRESS = 2.4048; SDEP = 0.3384 
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Parameters for External Validation: RMSEP = 0.3192; Rpred^2 = 0.6079; Q2f1 = 0.6079; Q2f2 

= 0.4962 

 

Appropriate model requirements for Golbraikh and Tropsha: 

K = 1.0123; [(r^2-r0^2)/r^2] = 0.0034 OR* K' = 0.9845; [(r^2-r'0^2)/r^2] = 1.09102 Passed    

 

Where the cut-off point: [0.85 < K < 1.15 and ((r^2-r0^2)/r^2) < 0.1] OR* [0.85 < K'< 1.15 and 

((r^2-r'0^2)/r^2) < 0.1], respectively.  

Table 3 shows the experimental and expected values based on the BSS-MLR model. Figure 2 also 

displays the expected versus experimental pIC50 for all 30 compounds in the training and test sets. 

Table 3 shows that the predicted and experimental values for the pIC50 are in good agreement. 

Model 1 had an explanatory power of about 71 percent and a standard error of estimation (SEE) 

of 0.34, R2adjusted = 0.66, and Fischer ratio (F) =13.69, while model 2 had an explanatory power 

of 74 percent and a least standard error of estimation (SEE) of 0.32, R2adjusted = 0.70, and Fischer 

ratio of 16.21. To assess the predictive potential of the BSS-MLR model, the correlation 

coefficients of cross-validation (Q2) and external validation (R2pred) were calculated. Internal 

validation Q2 = 0.61, SDEP = 0.36, R2pred = 0.62, RMSEP = 0.32 in model 1, and Q2 = 0.65, 

SDEP = 0.33, R2pred = 0.61, RMSEP = 0.32 in model 2. Because of its low standard error of 

estimate (SEE) and strong leave one out cross-validation (Q2(LOO)), model 2 appears to be more 

promising. 

Table 3. Descriptors and predicted activity of training and test set (Model 1 & 2) 

Name ATSC1e AATSC6m 

BCUTc-

1h GATS1e nTRing pIC50 

Predicted 

pIC50 (1) 

Predicted 

pIC50 (2) 

2 -0.45138 3.05046 0.27678 0.88411 6 5.078 5.0537 5.4579 

3 0.74477 -2.84469 0.22321 0.44417 3 4.208 3.8900 4.5508 

4 -0.08241 -3.21612 0.2969 0.75940 14 4.20798 5.1115 4.3485 

5 -0.2239 -32.2562 0.33074 0.72502 3 5.90658 5.952356 6.152657 

6 -0.1358 -12.4722 0.33041 0.69289 3 5.90658 5.446754 5.407724 

7 0.19233 0.417906 0.34799 0.63054 0 5.38977 5.049686 5.239743 

8 -0.38076 -14.9168 0.25911 0.78250 5 5.32121 5.178894 5.622514 

9 0.41466 1.61963 0.2765 0.52287 7 4.237659 4.547774 4.138233 
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10 0.25223 -7.20262 0.30337 0.58702 5 5.025626 4.953348 4.760256 

11 0.37966 5.463707 0.25721 0.61454 4 4.882464 4.212506 4.642147 

12 -0.67338 -3.17678 0.32654 0.8221 3 5.620876 5.671898 5.636821 

13 0.30992 0.494154 0.25062 0.63265 3 4.425078 4.41704 5.012047 

16 -0.73162 -6.12185 0.30048 0.79517 7 5.694649 5.546223 5.118679 

17 0.09184 1.393156 0.29075 0.59667 8 4.313972 4.866433 4.282581 

19 0.06084 -10.2925 0.33044 0.63369 4 4.931666 5.39702 5.126383 

20 -0.00932 -16.8192 0.33042 0.65751 3 5.796423 5.435354 5.390307 

21 0.08544 -1.33157 0.23805 0.68989 5 4.415036 4.538309 4.997014 

24 -0.48518 0.621487 0.29193 0.73625 4 5.356153 5.208899 5.151033 

25 -0.53385 9.345455 0.32654 0.80649 3 5.559878 5.231667 5.172499 

26 -0.35188 -8.67198 0.2908 0.74360 3 5.192194 5.316509 5.554288 

29 0.23877 -6.02456 0.29085 0.56797 5 4.824749 4.865343 4.682246 

    Test set     

1 0.01855 -14.3822 0.33043 0.64053 4 4.98209 5.435002 5.230721 

14 -0.29547 -5.9311 0.33644 0.81101 4 5.32948 5.529199 5.558663 

15 -0.38816 0.552731 0.33641 0.81476 6 5.90658 5.470832 5.200831 

18 -0.23976 7.281604 0.29072 0.67549 3 4.80538 4.934079 4.92738 

22 -0.36514 -9.48536 0.33639 0.77472 4 5.90658 5.641126 5.530903 

23 -0.63997 4.112573 0.29076 0.81903 5 5.06651 5.25989 5.235873 

27 0.27425 -2.0606 0.29781 0.57235 4 4.95125 4.812766 4.723306 

28 -0.38016 -10.3838 0.29082 0.79061 3 5.90658 5.3553 5.708938 

30 -0.57066 5.116052 0.26049 0.76043 5 4.86040 4.987564 5.029467 

 

A B 

Figure 2. Actual and predicted activities for training and test set molecules are plotted on a graph 

(A) Model 1 (B) Model 2 
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The Y-randomization test was carried out to avoid the chance correlation and to ensure that the 

models are robust [25]. After several reshuffles of the obtained 2D-QSAR model (Table 4 and 5), 

the R, R2, and Q2 values differ [26]. The deviation in the values of the non- disarrange model's 

squared mean correlation coefficient (R2) from the disarranged model's squared correlation 

coefficient (cRp2) is expressed in the value of cRp2 = 0.65 for the model 1 and 0.66 for model 2.  

Both are more bang-up than 0.5, indicating that the original 2D-QSAR models have a high level 

of internal consistency. External statistically validation parameters like Q2f1, Q2f2, K, [(r2-

r02)/r2], K', and [(r2-r'02)/r2] that beat the threshold values defined by Golbraikh and Tropsha 

[27] indicate acceptable predictability of the held 2D-QSAR models. 

Table 4. R2 train, Q2
LOO, and cRp2 values after several Y-randomization tests for model 1. 

Model 1 R R^2 Q^2 

Original 0.8410 0.7072 0.6113 

Random 1 0.5349 0.28616 -0.1375 

Random 2 0.2144 0.0460 -0.6585 

Random 3 0.1231 0.0152 -0.5837 

Random 4 0.2659 0.0707 -0.3859 

Random 5 0.1994 0.0398 -0.4672 

Random 6 0.4009 0.1607 -0.3855 

Random 7 0.1559 0.0243 -0.6550 

Random 8 0.1440 0.0208 -0.6674 

Random 9 0.5850 0.3423 0.0658 

Random 10 0.5570 0.3103 -0.0535 

Random Models Parameters 

Average r : 0.3181 

Average r^2 : 0.1316 

Average Q^2 : -0.3928 

cRp^2 : 0.6547 

 

Table 5. R2 train, Q2
LOO, and cRp2 values after several Y-randomization tests for model 2. 

Model 2 R R^2 Q^2 

Original 0.8608 0.7409 0.6481 

Random 1 0.3089 0.0954 -0.4211 

Random 2 0.3846 0.1479 -0.2874 

Random 3 0.5320 0.2830 -0.0350 

Random 4 0.1922 0.0369 -0.5226 
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Random 5 0.6204 0.3849 0.0177 

Random 6 0.5221 0.2726 -0.0244 

Random 7 0.2920 0.0852 -0.4960 

Random 8 0.3443 0.1185 -0.3042 

Random 9 0.6377 0.4066 0.1021 

Random 10 0.1540 0.0237 -0.7533 

Random Models Parameters 

Average r : 0.3988 

Average r^2 : 0.1855 

Average Q^2 : -0.2724 

cRp^2 : 0.6566 

 

The multi-collinearity between the above descriptors (model 1 and 2) was identified by measuring 

their variance inflation factors (VIF). If VIF equals 1, there is no inter-correlation for each variable; 

if VIF falls between 1 and 5, the related model is acceptable; and if VIF exceeds 10, the related 

model is unstable and a recheck is needed [28]. Tables 6 and 7 display the corresponding VIF 

values for each of the three descriptors for models 1 and 2. Tables 6 and 7 show that all of the 

descriptors have VIF values of less than two (2), suggesting that the model is statistically 

significant and that the descriptors are sufficiently orthogonal. The mean effect (MF) for models 

1 and 2 is shown in Tables 6 and 7, respectively. The MF  indicates the relative importance of a 

descriptor and its percentage contribution were compared with each other descriptors in the 

models. Its sign denotes the variable direction in the values of activities as a result of the calculated 

descriptor values increasing or decreasing. Model 1 shows that decreasing the value of Centered 

Broto-Moreau autocorrelation - lag 1 / weighted by Sanderson electro-negativities (ATSC1e) by 

2%, and Average centered Broto-Moreau autocorrelation - lag 6 / weighted by mass (AATSC6m) 

by 4% increase the biological activity. The MF of  nlow highest partial charge weighted BCUTS 

(BCUTc-1h) shows that biological activity increases by increasing 94% of the descriptor. In model 

2 Table 4, a decrease of these descriptors, Average centered Broto-Moreau autocorrelation - lag 6 
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/ weighted by mass (AATSC6m) by 4% and Number of rings (includes counts from fused rings) 

(nTRing) by 18%   increases the bioactivity of the compounds. An increase in Geary 

autocorrelation - lag 1 / weighted by Sanderson electronegativities (GATS1e) by 78% increase the 

biochemical activity of the compounds. 

Table 5: Linear model 1 is based on the three parameters selected by the BSS-MLR method. 
Descriptor VIF Mean effect Contribution (%) 

ATSC1e 1.209 -0.0191 ~ 2 

AATSC6m 1.114 -0.0423 4 

BCUTc-1h 1.327 0.9386 94 

 

Table 6: Linear model 2 is based on the four parameters selected by the BSS-MLR method. 
Descriptor VIF Mean effect Contribution (%) 

AATSC6m 1.024 -0.067 4 

GATS1e 1.019 1.22 ~ 78 

nTRing 1.036 -0.287 18 

 

The leverage values for each compound can be calculated and plotted against uniform residues, 

allowing for graphical recognition of both outliers and prominent compounds in the model. The 

applicability domain (Williams plot) is based in a squared/rectangular region in the 2 or 3 bound 

for residuals and the threshold value h*, which can be mathematically represented as h*= (3p+1)/c, 

where p is the number of model parameters and c is the number of compounds [29, 30].  All of the 

compounds from the training and test sets are contained within this square / rectangular area, as 

shown in Model 1 Figure 3a. There are no outlier and influential compounds with standardized 

residues -3 and +2 for both training and test sets. In comparison, both substances have a value 
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smaller than the alert value h* of 0.50. In model 2 Fig. 3b, all the compounds fall within the 

leverage threshold value (of 0.5) except compound 4 (training set). From the figure, they are no 

influential compounds with a standardized residual of ±3. 

a b 

Figure 3. The Williams map, which shows the uniform residuals against the leverage value (a) 

model 1 (b) model 2. 

 

Results of the 3D-QSAR models 

The steric (van der Waals) and electrostatic (coulombs) descriptors were used to create the 3D-

QSAR models, which provide easy understanding and chemical transferability. Table 8 displays 

the best CoMFA fractional factorial architecture (ffdsel) and CoMFA uninformative variable 

elimination-PLS (uvepls). For the CoMFA (ffdsel) model, the partial least square (PLS) analysis 

revealed a high leave one out (Q2) value of 0.5645 with 5 components. The convectional R2 of 

0.9982, F-value of 1659.5690, and leave two out (Q2LTO) of 0.5372 with leave many out cross-

validation (Q2LMO) of 0.4783 was obtained from the non-cross-validated PLS analysis. The 

working MIFs model was chosen as the CoMFA (uvepls) model, which uses both steric and 

electrostatic fields on 2.0 grid spacing, and whose validity and predictability were assessed by the 

R2 value of 0.9989 and Q2 value of 0.6307 with 5 components, F-value of 2679.6896, Q2LTO 

value of 0.6077, and leave many out cross-validations (Q2LMO) of 0.5466 (Table 7), which 
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indicated that the obtained 3D-QSAR model is reliable and able to predict binding affinities of the 

new compound. 

Table 8: Summary of 3D-QSAR models parameters 

Statistical parameters CoMFA (ffdsel) CoMFA (uvepls) 

R2 (SDEC) 0.9982 (0.024) 0.9989 (0.0189) 

Q2
LOO (SDEP) 0.5645 (0.3722) 0.6307 (0.3428) 

Q2
LTO (SDEP) 0.5372 (0.3837) 0.6077 (0.3533) 

Q2
LMO (SDEP ± SD) 0.4783 (0.4066 ± 0.0266) 0.5466 (0.3789 ± 0.0268) 

F-test   1659.5690 2679.6896 

 

Interpretation of 3D-QSAR contour map 

Both steric and electrostatic fields made different contributions in these CoMFA models. The van 

der Waals (steric) and Coulomb (electrostatic) contributions were found to be 77.7% and 22.3 

percent, respectively, in CoMFA (ffdsel). The van der Waals and Coulomb contributions were 

found to be 55.03 percent and 44.97 percent, respectively, in CoMFA (uvepls). As a result, the 

steric field had a greater impact than the electrostatic field, implying that steric interactions 

between molecules and receptors could be a key factor in anti-diabetes activity. Figures 4a and 4b 

display the plots of experimental and expected behavior obtained from CoMFA (ffdsel) and 

CoMFA (uvepls) studies, respectively. 
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a b 

Figure 4. Scatter plots of pIC50 3D-QSAR models for the training sets and test set validation 

 

Furthermore, 3D-QSAR models offer a way to explain the wealth of information derived from 

MIFs generated by 3D-QSAR models. Figures 5, 6, 7, and 8 depict the contour maps produced 

during pharmacophore evaluation and drug formulation-based Open3DQSAR analyses. The 

contour maps represent the favored and disfavored region in the molecular space that influences 

the biochemical activity of the molecules. The steric and electrostatic contours of CoMFA (ffdsel) 

compounds with the lowest activity (compound 5) and the highest activity (compound 17) are 

shown in Figures 5 to 8. The green and red polyhedrons signify regions in molecular space in 

which increased or decreased steric groups, respectively, are estimated to improved bioactivity in 

CoMFA (ffdsel) steric interactions contour maps of lowest biochemical activity (compound 5) and 

highest biochemical activity (compound 17). In the steric contour map of compound 5, a large 

green polyhedron suggesting increased steric bulk was located away from the structure, whereas 

because of the molecular size and functional groups attached, this steric bulk was found making 

interaction with the structure in the ffdsel steric contour map of compound 17. (Figure 5 and 6). 

The blue and yellow polyhedrons in the electrostatic counter map (Figures 5 and 6) indicate regions 

of higher electron density with a high binding affinity (negative charge) and lower electron density 
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with a lower affinity of the compounds to bind the protein (partial positive charge), respectively, 

predicting activity enhancement with compound 5 (low activity) and compound 17 (high activity), 

respectively. 

a b 

c d 

Figure 5. The CoMFA (ffdsel) steric (a) favorable (b) unfavorable and electrostatic interactions 

(c) electron-donating group (d) electron-withdrawing contour maps with the lowest binding 

affinity (compound 5).  
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a b 

c d 

Figure 6. CoMFA (ffdsel) steric (a) favorable (b) unfavorable and electrostatic interactions (c) 

electron-donating group (d) electron-withdrawing contour maps with the lowest binding affinity 

(compound 17).  

The CoMFA (uvepls) models for the two activities under review are relatively similar, suggesting 

that the putative biological receptor sites are related but vary enough to require considerable 

selectivity in some substances, as seen in the previous CoMFA (ffdsel) parts. In the CoMFA 

(uvepls) steric contour map of compound 5 (red contour), indicating increased steric bulk was 

located to the compound whereas in the CoMFA (uvepls) steric contour map of compound 17, this 
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steric bulk was found making interaction with the ligand. The closer the contour map to the ligand 

or molecule, the higher the steric energy. Both the favorable and unfavorable contour map of 

compound 5 (Figure 7a & 7b) are far apart from the compound, that is, they low steric (van der 

Waals) energy. The blue and yellow contour map of compound 5 (low activity) are the favorable 

electrostatic interactions with charged probe indicate molecular regions which are negative, and 

unfavorable electrostatic interactions with the positively charged probe indicate molecular regions 

which are positive, respectively.  

a 

b 

c d 

Figure 7. The CoMFA (uvepls) steric (a) favorable (b) unfavorable and electrostatic interactions 

(c) electron-donating group (d) electron-withdrawing contour maps with the lowest binding 

affinity (compound 5).  
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The contour maps of electrostatic interactions (Figure 7c and 7d) may explain why the activity of 

these compounds is different from compound 17 (Figure 8c and 8d). The contour maps are so close 

to compound 17 than compound 5. These show that the contour map is favorable for the interaction 

with the higher electron density with a high binding affinity (negative charge) and lower electron 

density with less affinity of the compounds to bind the protein (partial positive charge), 

respectively. This may explain why compound 5 is less potent than compound 17, which has a 

larger molecular size and more functional groups. As a result, these CoMFA models show that 

adding functional groups to a compound increases its activity, making it more potent. 

a b 
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c d 

Figure 8. The CoMFA (uvepls) steric (a) favorable (b) unfavorable and electrostatic interactions 

(c) electron-donating group (d) electron-withdrawing contour maps with the lowest binding 

affinity (compound 17). 

Interpretation of Molecular Docking Results 

Molecular docking has become an essential tool in the drug designing process. The application of 

in-silico docking has received considerable attention because it has decreased the expense and 

time, by increasing the speed and efficiency of the drug discovery process [31]. The derivatives 

were docked to the autoimmune T cells in the type 1 diabetes enzyme (PDB code: 5HYJ) and the 

energy values were computed using PyRx (Autodock vina). The outcome of docking studies is 

presented in Table 1. The energy values obtained were ranged from -4.9 to -9.3 Kcal/mol. The 

results indicate that compound 17 (-9.3 Kcal/mol) exhibited promising inhibitory activity in 

comparison to other compounds. The compounds interact with the structure of the autoimmune T 

cells in type 1 diabetes by binding with van der Waals (Thr73, Ala69, and Trp167), electrostatic 

(Arg97 and Lys66), hydrophobic (Tyr159, Lys66, Tyr99, His114, Val152, and Trp147) i.e., Pi-

sigma, Pi-Alkyl, and Alkyl, conventional hydrogen bonding (Arg97, Tyr159, and Glu63), carbon-

hydrogen bond (His70) and miscellaneous interaction i.e., Pi-sulfur (His70) amino acid residues 

as shown in Figure 9a and 9b. These findings back up the findings of the CoMFA study, which 
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showed the significance of molecular size and functional groups (bulky group, electron donor, and 

electron acceptor) for a potentially active compound. 

 

 
Figure 9. The docking interaction between compound 17 and the binding site of T cell in type 1 

diabetes  
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Interpretation of MDs Simulation 

By examining the results of 3D-QSAR and molecular docking, compound 17 was utilized as the 

lead compound, and the predominant changed area dictated by the above outcomes was almost 

altered with MD simulation. The root means square deviation (RMSD) and radial distribution 

function or pair correction function (RDF) plot of protein during the MD simulations are shown in 

Figure 10. The simulation result reveals that the RMSD tends to be steady and wavered at about 

2.22 Å and relatively stable after 1ns (Figure 10A), the RDF is a system of the particle (protein) 

that describes how density varies as a function of distance from the reference particle (water). The 

RDF is usually determined by calculating the distance between all particle pairs and binning them 

into a histogram. The RDF was stable from a distance (r) of 0.05 to 1.25 (Å), then fluctuate at 

about 1.75 (Å) (Figure 10B). After running 500,000 steps (1ns) the RDF value was 0.594 at a 

distance (r) of 10.05 (Å), which implies that the structure of the complex is basically in a stable 

state as shown in Figure 10B. 
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 B 
 

Figure 10. The product of molecular dynamic simulations during the 1ns NVT package. (A) The 

RMSD, (B) The Radial distribution function (RDF) value of the protein diagram.  

 

Total energy, potential energy, temperature, and kinetic energy were monitored during the 

simulations to ensure the stability of the simulated system, and plots are shown in Figure 11A-

11C.  
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B C 

Figure 11. Plot of the simulated complex (A) Total /potential energy, (B) Temperature (C) kinetic 

energy 

The Total energy, potential energy, and kinetic energy of the complex were set at -103070.17 

KJ/mol, -140885.90 KJ/mol, and 37814.72, respectively. As shown in the same figure, the Total 

energy, potential energy, and kinetic energy of the system are stable and did not show any 

abnormal fluctuation during the entire MD simulation at a temperature of about 298.79K (Figure 

11B). In conclusion, the complex was stable throughout the MD simulation. The protein-ligand 

interactions analysis is employed to explore more details about interactions between simulated 

protein and compound 17 during the 1ns MD simulation. In Figure 12, the ligand binding to protein 

in the same place with the docking model (Figure 9) and more deeply with the protein with 

additional interaction of pi-pi T-shaped and Amide-pi stacked. These additional interactions may 

increase this binding affinity. The MD simulation studies indicate that the bulky group, electron 

donor, and electron acceptor are very important for type 1 diabetes inhibition, the hydrogen-

bonded interactions of the compound with amino acids of the target protein were also favorable. 
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Figure 12. Molecular docking interactions of compound 17 with simulated protein structure. 

Conclusions 

In this research, the systematic investigation of 2D, 3D QSAR, docking simulation on thirty (30) 

compounds for autoimmune T cells in type 1 diabetes inhibitors is described. PaDEL-descriptor 

software packages were used to generate the 2D descriptors. The Data pre-treatment method and 

the Best subset selection (BSS) technique were used to filter the most appropriate descriptors. 

Multiple linear regression (MLR) was used to create two models (model 1 and model 2) that form 

a statistically consistent relationship between biochemical activities and descriptors. The result 

shows that model 2 had better predictive ability than model 1 with an R2 value of 0.741, Q2(LOO) 

value of 0.648, and R2pred value of 0.608. The same group of compounds were also subjected to 

3D-QSAR using CoMFA (ffdsel and uvepls) methodology. The CoMFA (uvepls) has reasonable 

R2, Q2(LOO), Q2(LTO), and Q2(LMO) values than CoMFA (ffdsel), suggesting that the model 

has excellent internal predictive power and good predictive capacity. The extracted contour maps 
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show the impact of steric and electrostatic fields on the type 1 diabetes inhibitory activity of the 

aligned molecules. Docking evaluation yields a qualitative representation of ligand (compound 17) 

and protein interactions, which can be compacted using CoMFA maps and the 2D-QSAR model. 

Both CoMFA and docking and molecular dynamics simulation studies show that the bulky group, 

electron donor, and electron acceptor are crucial for a potentially active ligand, and that the 

hydrogen-bonded interactions of the compound (compound 17) with amino acids of the target 

protein are also beneficial for type 1 diabetes inhibition. 
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