Study of Saturation and Supersaturation of Zr-Doped Vanadium Oxide Nanotubes

Document Type: Research Paper

Author

Department of chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Vanadium oxide nanotubes belong to inorganic nanotubes. One inorganic nanotubes (WS2) synthesized in 1992.Vanadium oxide nanotubes discovared by spahr in 1998.Vanadium oxide nanotubes are used in chemical, bio, electronics and catalysts industry. Many applications of these nanotubes have not yet been discovered. Especially when these nanotubes are doped with different elements. The structure of these nanotubes is flexible. This makes it possible to explore different ideas. In this research study zirconium – doped vanadium oxide nanotubes (VONTs) with different percentages were synthesized. Zr-doped VONTs were performed by hydrothermal method. Zr-VONTs prepared (0, 2, 10, 20, 30, 50 and 60) %wt. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM). The results showed that zirconium 2%wt doped VONTs complately but in others amount in addition doped, was forming zirconium oxide phase. Also with increase percent of doping Zr into vanadium oxide nanotubes were formed monoclinic structure of ZrO2.The increase of doping level of the ZrO2 phase leads to change interlayer distances.

Keywords


[1] R. Rouhani, H.R. Aghabozorg, and M.A. Asad Ababdada, synthesis and characterization of Re-, MO- , and W- doped vanadium oxide nanotubes, taylor & francis Groups, LLC, 1018- 1021, 2011

[2] R. Tenne, L, Margulis, M. Genut, G. modes, Nature 1992, 360, 444.

 [3] M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H. U. Nissen, Angew. Chem., Int. Ed. 37 (1998) 1263.

[4] Mai, L. Q; chen, W; Xu, Q; peng, J. F, Zhu, Q. Y. Mo doped vanadium oxide nanotubes: microstructure and electrochemistry chem. Phys. Let 2003, 382, 307-312.

[5] R. Tenne, L, Margulis, M. Genut, G. modes, Nature 1992, 360, 444.

[6] Y. Feldman, E. wasserman, D. j. Srolouitz, R. Tenne, Science 1995, 267, 222.

[7] N. G. chopra, R. G. Luyken, K. cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, science 1995, 256, 966.

[8] H. Nakamura, Y. Matsui, L. Am. Chem, Sock. 1995, 117, 2651.

[9] P. Hoyer, Langmuir 1996, 12, 1411.

[10] M. E. Spah, P. Bitterli, R. Nesper, m. Muller, F. krumeich, H. U. Niessen, Angw Chem. Ent. Ed. 1998, 37, 1263; Angew. Chem. 1998, 110, 1339.

[11] M. Kanttcheva, Physical Chemistry Chemical Physics 2 (2000) 3-43-3048.

[12]D. H. Galvan, J. H. Kim, M. B. Maple, M. Avalos – Berja, E. Adem, Full erene Sci, Technol, 2000, 8, 143.

[13]M. Niederberg, H. J. Muher, F. Krmeich, F. Bieri, D. Gunther, R. Nesper, Chem. Mater. 12 (2000) 1995.

[14] F. Bieri, F. Krumeich, H. J. Muher, R. Nesper, Helv. Chim. Acta 84 (2001) 3015.

[15] Grigoreva, A. V, Anikina, A. V, Tarasor, A. B, sudilin, E. A, knotko, A. V, Volkov, V. V, Dembo, K. A, Tretyakov, Y. D micromere apology and structure of vanadium oxide nanotubes. Doklady chem, 2006, Ulo, 165-169.

[16] Li,. Zheng, L., zhang, K. F. Feng, X. Q, SU, Z. X. Ma, J. T Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties. Mater, Res. Bull. 2008, 43, 2810 -2817.