ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran

Abstract

In this work, by using density functional theory, the adsorption of Nitramide (NH2NO2) molecule on the surface of pristine, B, As and B&As doped (4,4) armchair aluminum nitride nanotube (AlNNTs) is investigated. From optimized structures the adsorption energy, deformation energy, natural bond orbital (NBO), atom in molecule (AIM), quantum parameters, reduced density gradient (RDG) and molecular electrostatic potential (MEP) are calculated. The calculated results indicate that the adsorption energy values of NH2NO2 on the surface of pristine, As, B and B&As doped AlNNTs complex are negative and favorable in viewpoint of thermodynamic. Moreover the adsorption of NH2NO2 molecule on the surface of B&As doped AlNNTs is more stable and favorable than other models. It is notable that with doping B&As atoms in AlNNTs the deformation energy of NH2NO2 and nanotube are less than other models. The results of AIM and RDG outcomes demonstrate that nature of binding NH2NO2…AlNNTs is covalent bond type, indicates strong interactions. The results of NBO & Mulliken partial charge transfer, HOMO-LUMO, total charge transfer parameters (ΔN) and molecular electrostatic potential (MEP) display that the charge transfer occurred from NH2NO2 molecule toward nanotube surface and electrical properties of system change significantly from original state. The results of this study reveal that the B&As doped AlNNTs is a good adsorbent for NH2NO2 molecule.

Keywords

[1]  S. Ijima, Nature. 354,56 (1991).
[2]  V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Appl. Phys. Lett., 80, 2773 (2002).
[3]  C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H. M. Cheng, M. S. Dresselhaus, Science., 286,1127(1999).
[4]  M. Mirzaei, A. Shif, N.L. Hadipour, Chem. Phys. Lett., 461,246(2008).
[5]  M. T. Baei, Monatsh. Chem., 143,545(2012).
[6]  M. T. Baei, A.A. Peyghan, M. Moghimi, S. Hashemian, Superlat. Microstr., 52(6),1119(2012).
[7]  M. T. Baei, A. A. Peyghan, Z. Bagheri, Struct. Chem., 24(4),1007 (2013).
[8]  J. Beheshtian, A. A.. Peyghan, J. Mol. Model. 19(6),, 2211(2013).
[9]  D. Zhang, R. Zhang, Chem. Phys. Lett., 371(3),426(2003).
 [10]  V. Tondare, C. Balasubramanian, S. Shende, D. Joag, V. Godbole, S. Bhoraskar, M. Bhadbhade, Appl. Phys. Lett., 80(25), 4813(2002).
 [11]  Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu, Y. Chen, J. Am. Chem. Soc., 125(34),10176(2003).
 [12]  Y. Cao, D. Jena, Appl. Phys. Lett., 90(18),182112 (2007).
 [13]  J. Nipko,C-K. Loong, Phys. Rev. B., 57(17),10550(1998).
 [14]  Z. Zhen, Z. Jijun, C. Yongsheng, S. Paul von Rague, C. Zhongfang, Nanotechnol., 18(42), 424023 (2007).
 [15]  P. Ruterana, M. Albrecht, J. Neugebauer, (2003) Nitride semiconductors (handbook on materials and devices. Wiley, New York 2003).
 [16]  K. H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B., 69,201401(2004).
 [17]  G.Y. Guo, S. Ishibashi, T. Tamura, K. Terakura, Phys. Rev. B., 75,245403(2007).
 [18]  C. Attaccalite, L. Wirtz, A. Marini, A. Rubio, Phys. Status. Solidi. B., 244,4288 (2007).
 [19]  M. Moradi, N. Naderi, Struc. Chem. 10,1(2014).
 [20]  S.F. Rastegar, A. A. Peyghan, H. R. Ghenaatian, N. L. Hadipour, Appl. Surf. Sci., 274,217(2013).
 [21]  C. Giordano, I. Ingrosso, M. T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio, Microelectron. Eng., 86,1204 (2009).
 [22]  A. Ahmadi, J. Beheshtian, N. L. Hadipour, Phys. E., 43,1717(2011).
 [23]  A. Ahmadi, M. Kamfiroozi, J. Beheshtian, N.L. Hadipour, Struct. Chem., 22,1261(2011).
 [24]  Y. Jiao, A. Du, Z. Zhu, V. Rudolph, S.C. Smith, J. Mater. Chem., 20,10426(2010).
 [25.  J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Struct. Chem., 23,653(2011).
 [26]  A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Sens. Actua. B-Chem., 161,1025(2012).
 [27]  A. Ahmadi, A. Omidvar, N. L. Hadipour, Z. Bagheri, M. Kamfiroozi, Phys., 44,1357(2011).
 [28]  J. Beheshtian, M. T. Baei, A. Ahmadi Peyghan, Z. Bagheri, J. Mol. Model., 18, 4745(2012).
 [29]  A. A. Peyghan, M. T. Baei, S. Hashemian, P. Torabi, J. Mol. Model., 19,859(2013).
 [30]  M. T. Baei, A. A. Peyghan, M. Moghimi, J. Mol. Model., 18, 4477 (2012).
 [31]  M. T. Baei, A.A. Peyghan, Z. Bagheri, Chin. Chem. Lett., 23,965(2012).
 [32]  J. Beheshtian, H. Soleymanabadi, M. Kamfiroozi, A. Ahmadi, J. Mol. Model., 18, 2343(2012).
 [33]  J. Beheshtian, A. A. Peyghan, Z. Bagheri, J. Mol. Model., 19, 2197(2013).
 [34]  J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Struct. Chem., 23,653(2012).
 [35]  J. Beheshtian, M. T. Baei, A.A. Peyghan, Z. Bagheri, J. Mol. Model., 18(10), 4745(2012).
 [36]  J. Beheshtian, M. T. Baei, Z. Bagheri, A.A. Peyghan, Microelectron. J., 43(7), 452(2012).
 [37]  J. Beheshtian, A. A. Peyghan, Z. Bagheri Phys. E., 44(9), 1963(2012).
 [38]  J. Beheshtian, M. T. Baei, A. A. Peyghan, Z. Bagheri, J. Mol. Model., 19, 943(2013).
 [39]  A. Seif, L. Torkashavand, F. Mohammadi, Cent. Eur. J. Chem., 12(2), 131(2014).
 [40]  M. Shahabi, H. Raissi, J. Incl. Phenom. Macrocycl. Chem., 86, 305 (2016).
 [41]  Y. Li, Z.  Zhou, J. Zhao, Nanotechnol., 19, 015202 (2008).
 [42]  L. Wang, C. Yi, H. Zou, J. Xu, W. Xu, Mater. Chem. Phys., 127, 232(2011).
 [43]  M. Rezaei‒Sameti, S. Baranipour, J. Phys. Theor. Chem. IAU Iran., 14 (3), 211(2017).
 [44]  M. Rezaei-Sameti, N. Javadi Jukar, J. Nanostruct. Chem., 7,293(2017).
 [45]  M. Rezaei-Sameti, S. Yaghoobi, Comput. Cond. Mater., 3, 21(2015).
 [46]  M. Rezaei-Sameti, E. Samadi Jamil, J. Nanostr. Chem., 3, 1(2016).
 [47]  R. Ditchfield, W. J.  Hehre, J. A. Pople, J. Chem. Phys., 54,724(1972).
 [48]  M. W. Schmidt, K.K. Baldridge, J. A.  Boatz, S. T.  Elbert, M. S. Gordon, J. H.  Jensen, S.  Koseki, N. Matsunaga, K. A. Nguyen, S. J.  Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comp .Chem., 14 , 1347(1993).
 [49]  D. F. V. Lewis, C.  Ioannices, D. V. Parke, Xenobiotica., 24, 401(1994).
 [50]  I. Fleming, Frontier Orbitals and Organic Chemical Reactions. (Wiley, New York 1976).
 [51]  A. E. Reed, L.A. Curtiss, F. Weinhold,  Chem. Rev., 88, 899(1988).
 [52]  S, Stegmeier, M. Fleischer, P. Hauptmann, Sens. Actuators B Chem., 148, 439(2010).
 [53]  R. F. W. Bader, Atoms in Molecules: A Quantum Theory. (Oxford University Press, New York. 1990).
 [54]  F. Biegler‒Konig, AIM2000 designed (University of Applied Sciences, Bielefeld 2001).
 [55]  Z. Peralta-Inga, P. Lane, J. S. Murray,  S. Boyd,  M. E.  Grice, C. J. O'Connor, P. Politzer, Nano Lett., 3(1) , 21(2003).
 [56]  F.A. Bulat, A. Toro-Labbé, T. Brinck, J. S. Murray, P. Politzer P.  J. Mol. Model., 16(11), 1679(2010).
[57]  F. A. Bulat, J. S. Burgess, B. R. Matis, J.W. Baldwin, L. Macaveiu, J.S. Murray, P. Politzer, J. Phys.  Chem. A., 16(33), 8644(2012).
 
 [58]  T. Lu, F. Chen,Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580 (2012).
[1]  S. Ijima, Nature. 354,56 (1991).
[2]  V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Appl. Phys. Lett., 80, 2773 (2002).
[3]  C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H. M. Cheng, M. S. Dresselhaus, Science., 286,1127(1999).
[4]  M. Mirzaei, A. Shif, N.L. Hadipour, Chem. Phys. Lett., 461,246(2008).
[5]  M. T. Baei, Monatsh. Chem., 143,545(2012).
[6]  M. T. Baei, A.A. Peyghan, M. Moghimi, S. Hashemian, Superlat. Microstr., 52(6),1119(2012).
[7]  M. T. Baei, A. A. Peyghan, Z. Bagheri, Struct. Chem., 24(4),1007 (2013).
[8]  J. Beheshtian, A. A.. Peyghan, J. Mol. Model. 19(6),, 2211(2013).
[9]  D. Zhang, R. Zhang, Chem. Phys. Lett., 371(3),426(2003).
 [10]  V. Tondare, C. Balasubramanian, S. Shende, D. Joag, V. Godbole, S. Bhoraskar, M. Bhadbhade, Appl. Phys. Lett., 80(25), 4813(2002).
 [11]  Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu, Y. Chen, J. Am. Chem. Soc., 125(34),10176(2003).
 [12]  Y. Cao, D. Jena, Appl. Phys. Lett., 90(18),182112 (2007).
 [13]  J. Nipko,C-K. Loong, Phys. Rev. B., 57(17),10550(1998).
 [14]  Z. Zhen, Z. Jijun, C. Yongsheng, S. Paul von Rague, C. Zhongfang, Nanotechnol., 18(42), 424023 (2007).
 [15]  P. Ruterana, M. Albrecht, J. Neugebauer, (2003) Nitride semiconductors (handbook on materials and devices. Wiley, New York 2003).
 [16]  K. H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B., 69,201401(2004).
 [17]  G.Y. Guo, S. Ishibashi, T. Tamura, K. Terakura, Phys. Rev. B., 75,245403(2007).
 [18]  C. Attaccalite, L. Wirtz, A. Marini, A. Rubio, Phys. Status. Solidi. B., 244,4288 (2007).
 [19]  M. Moradi, N. Naderi, Struc. Chem. 10,1(2014).
 [20]  S.F. Rastegar, A. A. Peyghan, H. R. Ghenaatian, N. L. Hadipour, Appl. Surf. Sci., 274,217(2013).
 [21]  C. Giordano, I. Ingrosso, M. T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio, Microelectron. Eng., 86,1204 (2009).
 [22]  A. Ahmadi, J. Beheshtian, N. L. Hadipour, Phys. E., 43,1717(2011).
 [23]  A. Ahmadi, M. Kamfiroozi, J. Beheshtian, N.L. Hadipour, Struct. Chem., 22,1261(2011).
 [24]  Y. Jiao, A. Du, Z. Zhu, V. Rudolph, S.C. Smith, J. Mater. Chem., 20,10426(2010).
 [25.  J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Struct. Chem., 23,653(2011).
 [26]  A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Sens. Actua. B-Chem., 161,1025(2012).
 [27]  A. Ahmadi, A. Omidvar, N. L. Hadipour, Z. Bagheri, M. Kamfiroozi, Phys., 44,1357(2011).
 [28]  J. Beheshtian, M. T. Baei, A. Ahmadi Peyghan, Z. Bagheri, J. Mol. Model., 18, 4745(2012).
 [29]  A. A. Peyghan, M. T. Baei, S. Hashemian, P. Torabi, J. Mol. Model., 19,859(2013).
 [30]  M. T. Baei, A. A. Peyghan, M. Moghimi, J. Mol. Model., 18, 4477 (2012).
 [31]  M. T. Baei, A.A. Peyghan, Z. Bagheri, Chin. Chem. Lett., 23,965(2012).
 [32]  J. Beheshtian, H. Soleymanabadi, M. Kamfiroozi, A. Ahmadi, J. Mol. Model., 18, 2343(2012).
 [33]  J. Beheshtian, A. A. Peyghan, Z. Bagheri, J. Mol. Model., 19, 2197(2013).
 [34]  J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Struct. Chem., 23,653(2012).
 [35]  J. Beheshtian, M. T. Baei, A.A. Peyghan, Z. Bagheri, J. Mol. Model., 18(10), 4745(2012).
 [36]  J. Beheshtian, M. T. Baei, Z. Bagheri, A.A. Peyghan, Microelectron. J., 43(7), 452(2012).
 [37]  J. Beheshtian, A. A. Peyghan, Z. Bagheri Phys. E., 44(9), 1963(2012).
 [38]  J. Beheshtian, M. T. Baei, A. A. Peyghan, Z. Bagheri, J. Mol. Model., 19, 943(2013).
 [39]  A. Seif, L. Torkashavand, F. Mohammadi, Cent. Eur. J. Chem., 12(2), 131(2014).
 [40]  M. Shahabi, H. Raissi, J. Incl. Phenom. Macrocycl. Chem., 86, 305 (2016).
 [41]  Y. Li, Z.  Zhou, J. Zhao, Nanotechnol., 19, 015202 (2008).
 [42]  L. Wang, C. Yi, H. Zou, J. Xu, W. Xu, Mater. Chem. Phys., 127, 232(2011).
 [43]  M. Rezaei‒Sameti, S. Baranipour, J. Phys. Theor. Chem. IAU Iran., 14 (3), 211(2017).
 [44]  M. Rezaei-Sameti, N. Javadi Jukar, J. Nanostruct. Chem., 7,293(2017).
 [45]  M. Rezaei-Sameti, S. Yaghoobi, Comput. Cond. Mater., 3, 21(2015).
 [46]  M. Rezaei-Sameti, E. Samadi Jamil, J. Nanostr. Chem., 3, 1(2016).
 [47]  R. Ditchfield, W. J.  Hehre, J. A. Pople, J. Chem. Phys., 54,724(1972).
 [48]  M. W. Schmidt, K.K. Baldridge, J. A.  Boatz, S. T.  Elbert, M. S. Gordon, J. H.  Jensen, S.  Koseki, N. Matsunaga, K. A. Nguyen, S. J.  Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comp .Chem., 14 , 1347(1993).
 [49]  D. F. V. Lewis, C.  Ioannices, D. V. Parke, Xenobiotica., 24, 401(1994).
 [50]  I. Fleming, Frontier Orbitals and Organic Chemical Reactions. (Wiley, New York 1976).
 [51]  A. E. Reed, L.A. Curtiss, F. Weinhold,  Chem. Rev., 88, 899(1988).
 [52]  S, Stegmeier, M. Fleischer, P. Hauptmann, Sens. Actuators B Chem., 148, 439(2010).
 [53]  R. F. W. Bader, Atoms in Molecules: A Quantum Theory. (Oxford University Press, New York. 1990).
 [54]  F. Biegler‒Konig, AIM2000 designed (University of Applied Sciences, Bielefeld 2001).
 [55]  Z. Peralta-Inga, P. Lane, J. S. Murray,  S. Boyd,  M. E.  Grice, C. J. O'Connor, P. Politzer, Nano Lett., 3(1) , 21(2003).
 [56]  F.A. Bulat, A. Toro-Labbé, T. Brinck, J. S. Murray, P. Politzer P.  J. Mol. Model., 16(11), 1679(2010).
[57]  F. A. Bulat, J. S. Burgess, B. R. Matis, J.W. Baldwin, L. Macaveiu, J.S. Murray, P. Politzer, J. Phys.  Chem. A., 16(33), 8644(2012).
 [58]  T. Lu, F. Chen,Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580 (2012).