ABSTRACT

All calculations were performed within the MP2/6-311 G (d, p) method to evaluate the effects of substituent groups which affect the structural stability and molecular energy. A natural bond orbital (NBO) analysis and isotopic, and anisotropic NMR chemistry, were used also for a better understanding of the C2X4 electronic structure and its derivatives. The NBO analysis shows that the occupancy of lone pair electrons of halogen atoms in all compounds decreases with increasing p character of the lone pair of halogen atoms. Furthermore, NBO analysis demonstrated the effects of donates substituent groups including (CH3, NH2, and OH) that donates some of its electron density into a π system via resonance or inductive effects, thus making the π system more nucleophilic on electron density. The obtained values from NMR tensors parameters shows electronegativity in excellent agreement with the expected chemical shielding values. Therefore, we suggest that is correlations between donates substituent groups with electronegativity along with the total stability energy of the studied molecules. The energies gap of frontier molecular orbital ($\epsilon_{\text{LUMO}} - \epsilon_{\text{HOMO}}$) is recorded in order to find the suitability correlation between this energy with chemical hardness (η) of the studied molecules.

Keywords: MP2 method, NBO analysis, NMR shielding, HOMO-LUMO
Introduction

In recent years there has been a great deal of attention paid to the geometric difference between two-dimensional C = C compounds [1, 2]. The simplest C=C compound is ethylene with a formula C2H4 that contains four hydrogen atoms bound to a double bond. It is an unsaturated hydrocarbon and also it is a colorless and highly flammable gas. Ethylene can have many different reactions, such as halogen, oxidation, polymerization, and hydration [3]. In these study halogens (fluorine (F), chlorine (Cl)), replacing all H atoms in an ethylene that they are called tetra haloethylene compounds. Tetra flour ethylene (TFE) is a chemical compound with the formula C2F4 and this belongs to the fluorocarbon family. In general, tetrafluoroethylene is used to synthesize polytetrafluoroethylene resins, in the synthesis of copolymers as a monomer. When heated to decomposition, tetrafluoroethylene releases a highly toxic fluorocarbon phosphate. The main route of exposure is inhalation. Exposure to activated inhalation with tetrafluoroethylene may cause respiratory inflammation and fluid formation in the lungs (pulmonary edema) [4]. Tetrachloroethylene (also known as PCE, PERC, perchloroethylene or tetrachloroethene, receptivity) is a man-made chemical that is widely used. PERC is a colorless, volatile, non-flammable liquid, carbon dioxide with an ether-like odor that may be exposed to sunlight or toxic flames from phosgene. Tetrachlorethylene is mainly used as a clean solvent in dry cleaning and textile processing and in the production of fluorocarbons. Exposure to this substance stimulates the upper respiratory tract and the eye and causes neurological complications as well as damage to the kidneys and the liver. Tetrachlorethylene is predicted to be a human carcinogen and may be associated with an increased risk of skin, colon, lung, esophagus and urinary tract infections, as well as lymphoma and leukemia [5]. Understanding the halo-ethylene spectroscopy is important for many reasons, including the fact that a number of haloethylenes are toxic pollutants. To this end, many studies have been done in the past, especially experimental studies aimed at understanding the structure of electrons on haloethylenes. Even then, studies of ultraviolet radiation on the ethylene absorption spectrum and its halogen derivatives have long been considered with a large number of transitions, which have not yet been covered by ambiguous transfers due to some fundamental transitions. Therefore, it is best to study these pollutants using modeling structures in chemical calculations [6]. In this work, a comparative study carried out on the structural properties and reactivity of the molecules
M$_2$X$_4$, M=C, X=H, F, Cl) using chemical calculation. Also, investigated electron donating substituents effect such as CH3, NH2 and OH on the structural properties and reactivity of the molecules. Is following, the basic study is to analyze the effects of substituents on the structural stability of natural bond orbital (NBO) analysis and Nuclear magnetic resonance (NMR) parameters.

Computational methods

Møller–Plesset calculations are standard levels used in calculating small systems and are implemented in many computational chemistry codes. Systematic studies of MP perturbation theory have shown that it is not necessarily a convergent theory at high orders. Convergence can be slow, rapid, oscillatory, regular, highly erratic or simply non-existent, depending on the precise chemical system or basis set. The density matrix for the first-order and higher MP2 wave function is of the type known as response density, which differs from the more usual expectation value density. The eigenvalues of the response density matrix (which are the occupation numbers of the MP2 natural orbitals) can therefore be greater than 2 or negative. Unphysical numbers are a sign of a divergent perturbation expansion. For open shell molecules, MP$_n$-theory can directly be applied only to unrestricted Hartree–Fock reference functions (since UHF states are not in general eigenvectors of the Fock operator). However, the resulting energies often suffer from severe spin contamination, leading to large errors. A possible better alternative is to use one of the MP2-like methods based on restricted open-shell Hartree–Fock (ROHF). Unfortunately, there are many ROHF based MP2-like methods because of arbitrariness in the ROHF wave function.

Quantum-chemical calculations were carried out with the Gaussian 09 [7] package of the program. All structures were fully optimized at the Møller-Plesset-type theory (MP2) couple-cluster method using 6-311++g (d, p) basis set (show that Figure.1). The calculated partial atomic charges are achieved theoretically employing the Mulliken approximation (Mulliken, 1955). Also, the change of charge values of filled and the vacant orbitals of NBO analysis describe various second-order interactions which represent the electron transfer. NBO helps to extract natural hybrids (NHOs) and occupancy of the bonding and non-covalent (lone pair) orbitals. The energy contribution of these changes was initially estimated from the second-order mobility approach [8]. The NBO analysis interpretation is an appropriate and detailed theory that
examines quantitatively the effects of hyperconjugation interactions and steric effects on the dynamic behavior of chemical reactions and chemical substances [9]. NMR calculations were done using an optimized structure with the same level of theory by using gauge invariant atomic orbital (GIAO) [10] method for the nuclear magnetic shielding. The values of isotropic chemical shielding (σ_{iso}), anisotropic shielding ($\Delta\sigma_{\text{iso}}$) and asymmetric shielding (η) were calculated by the following formulas, respectively.

\[
\sigma_{\text{iso}} = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33}) \quad (1)
\]

\[
\Delta\sigma = \sigma_{33} - \frac{\sigma_{11} + \sigma_{22}}{2} \quad (2)
\]

\[
\eta = \frac{\sigma_{22} - \sigma_{11}}{\sigma_{33} - \sigma_{\text{iso}}} \quad (3)
\]

Quantum chemical analyses for considering molecules have been used of the frontier orbital (HOMO and LUMO), hardness and electronegativity for contributing us understand the character of molecules.

<table>
<thead>
<tr>
<th>Molecular Geometry</th>
<th>CH$_2$=CH$_2$</th>
<th>CF$_2$=CF$_2$</th>
<th>CCl$_2$=CCl$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsubstituted</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Substituent</td>
<td>CH$_2$=CH(CH$_3$)</td>
<td>CF$_2$=CF(CH$_3$)</td>
<td>CCl$_2$=CCl(CH$_3$)</td>
</tr>
<tr>
<td>- CH$_3$</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>CH$_2$=CH(NH$_2$)</td>
<td>7</td>
<td>CF$_2$=CF(NH$_2$)</td>
<td>CCl$_2$=CCl(NH$_2$)</td>
</tr>
<tr>
<td>- NH$_2$</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CH$_2$=CH(OH)</td>
<td>10</td>
<td>CF$_2$=CF(OH)</td>
<td>CCl$_2$=CCl(OH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Results and Discussion

Molecular geometry

Halogens, CH₃, NH₂ and OH have substituted ethylene with the same performance and the minimum global energy M₂X₄, M = C, X = H, F, Cl is calculated by optimizing the structure 153.428, -474.638 and -1914.561 Hartree respectively (see Table 1). Structural parameters calculated from compounds such as length (Å), bond angles (°) and dentures (°) are presented in Table 2. According to Table 3, the type of substitution along the length of the bond is indicated that the change in the bond length in C₂Cl₄ is longer than the structure of C₂H₄ and C₂F₄. Based on the interatomic distance and change of the length bonds are over stable the C₂Cl₄ from other molecules. The length of the C-H bond in the structure of C₂H₄ is shorter than other compounds because of that the angle of bonding is less than other compounds and the stress at the θ_H-C-C angle is not significant. Subsequently, the replacement in CH₃, NH₂, and OH substitutes indicates that the bond length in C₂H₃CH₃ is longer than C₂H₃NH₂ and C₂H₃OH. Also, the severe effect on the stress angle in C₂H₃CH₃ is more than other compounds.

Table 1: The global minimum energy of the molecules C₂X₄ (X=H, F, and Cl) and C₂X₃Y (X=H, F, and Cl, Y=CH₃, NH₂, and OH) at MP2/6-311++g**

<table>
<thead>
<tr>
<th>Energy System</th>
<th>Unsubstituent</th>
<th>CH₃</th>
<th>NH₂</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂=CH₂</td>
<td>-153.428</td>
<td>-117.466</td>
<td>-133.509</td>
<td>-153.399</td>
</tr>
<tr>
<td>CF₂=CF₂</td>
<td>-474.638</td>
<td>-414.517</td>
<td>-430.748</td>
<td>-450.642</td>
</tr>
<tr>
<td>CCl₂=CCl₂</td>
<td>-1914.561</td>
<td>-1494.482</td>
<td>-1510.702</td>
<td>-1530.595</td>
</tr>
</tbody>
</table>
Table 2: The calculated structural parameters of compounds M_{2}X_{4} (X=H, F, and Cl) at MP2/6-311++G**.

<table>
<thead>
<tr>
<th>Compound Bond lengths (Å)</th>
<th>H</th>
<th>F</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>r C-C</td>
<td>1.339</td>
<td>1.329</td>
<td>1.354</td>
</tr>
<tr>
<td>r C-X</td>
<td>1.085</td>
<td>1.318</td>
<td>1.714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles (°)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>θ X-C-C</td>
<td>121.4</td>
<td>123.2</td>
<td>122.2</td>
</tr>
<tr>
<td>θ X-C-X</td>
<td>117.2</td>
<td>113.6</td>
<td>115.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torsion Angles (°)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>θ X-C-C-X</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 3: The calculated structural parameters of compounds M_{2}X_{4} (X=H, F, and Cl) and the effect of substitution on the bond lengths (Å) and Bond angles (°).

<table>
<thead>
<tr>
<th>Compound</th>
<th>bond lengths (Å)</th>
<th>C_{2}H_{4}</th>
<th>C_{2}F_{4}</th>
<th>C_{2}Cl_{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r 1,2</td>
<td>1.085</td>
<td>1.318</td>
<td>1.714</td>
</tr>
<tr>
<td></td>
<td>r 2,3</td>
<td>1.339</td>
<td>1.329</td>
<td>1.354</td>
</tr>
<tr>
<td></td>
<td>r 3,4</td>
<td>1.085</td>
<td>1.318</td>
<td>1.714</td>
</tr>
<tr>
<td></td>
<td>r 2,6</td>
<td>1.085</td>
<td>1.318</td>
<td>1.714</td>
</tr>
<tr>
<td></td>
<td>r 3,5</td>
<td>1.085</td>
<td>1.318</td>
<td>1.714</td>
</tr>
<tr>
<td>Unsubstituted</td>
<td>r 1,2</td>
<td>C_{2}H_{3}</td>
<td>C_{2}F_{3}</td>
<td>C_{2}Cl_{3}</td>
</tr>
<tr>
<td></td>
<td>r 2,3</td>
<td>CH_{3}</td>
<td>CH_{3}</td>
<td>CH_{3}</td>
</tr>
<tr>
<td></td>
<td>r 3,4</td>
<td>1.085</td>
<td>1.321</td>
<td>1.709</td>
</tr>
<tr>
<td></td>
<td>r 3,5</td>
<td>1.086</td>
<td>1.352</td>
<td>1.743</td>
</tr>
<tr>
<td></td>
<td>r 2,6</td>
<td>1.501</td>
<td>1.438</td>
<td>1.423</td>
</tr>
<tr>
<td></td>
<td>r 6,7</td>
<td>1.093</td>
<td>1.187</td>
<td>1.125</td>
</tr>
<tr>
<td></td>
<td>r 6,8</td>
<td>1.095</td>
<td>1.076</td>
<td>1.167</td>
</tr>
<tr>
<td></td>
<td>r 6,9</td>
<td>1.095</td>
<td>1.172</td>
<td>1.078</td>
</tr>
<tr>
<td>CH_{3}</td>
<td>r 1,2</td>
<td>C_{2}H_{3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r 2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r 3,4</td>
<td>1.081</td>
<td>1.324</td>
<td>1.714</td>
</tr>
<tr>
<td></td>
<td>r 3,5</td>
<td>1.085</td>
<td>1.335</td>
<td>1.372</td>
</tr>
<tr>
<td></td>
<td>r 2,6</td>
<td>1.378</td>
<td>1.374</td>
<td>1.403</td>
</tr>
<tr>
<td></td>
<td>r 6,7</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>r 6,8</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>NH_{2}</td>
<td>r 1,2</td>
<td>C_{2}H_{3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r 2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r 3,4</td>
<td>1.081</td>
<td>1.324</td>
<td>1.714</td>
</tr>
<tr>
<td></td>
<td>r 3,5</td>
<td>1.085</td>
<td>1.335</td>
<td>1.372</td>
</tr>
<tr>
<td></td>
<td>r 2,6</td>
<td>1.378</td>
<td>1.374</td>
<td>1.403</td>
</tr>
<tr>
<td></td>
<td>r 6,7</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>r 6,8</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>bond lengths (Å)</td>
<td>C_{2}H_{3}OH</td>
<td>C_{2}F_{3}OH</td>
<td>C_{2}Cl_{3}OH</td>
<td></td>
</tr>
</tbody>
</table>
The NBO analysis [10] plays a crucial role in the representation of interactions between the electron donors and acceptor orbitals, i.e. delocalization of the electron from filled to empty spaces. This displacement of electrons in the empty spaces can be defined as the "electron transfer process". The effect of delocalization interactions is included changes in energy, geometry, natural atomic charge, occupancy values, mulliken atomic charges and other properties. [11]. As well as, The NBO investigations of the charge transfer or conjugative interactions molecular systems and studying intra- and intermolecular bonding and interaction between bonds [12]. These interactions or energetic stabilizations are referred to as “delocalization” corrections to the zeroth-order natural Lewis structure. The stabilization energy (E2) associated with i → j delocalization can be estimated by second-order perturbation theory.
\[E_2 = q_i(F^2_{ij})/\left(\varepsilon_i - \varepsilon_j\right) \]

According to the following equation:

Where \(q_i \) is the donor orbital occupancy, \(\varepsilon_i \) and \(\varepsilon_j \) are diagonal elements (orbital energies) and \(F \) (i, j) is the off-diagonal NBO Fock matrix elements [13]. The stabilization energy (\(E_2 \)) corresponds to the \(S^2 / \Delta E \), where \(S \) is the orbital overlap, and \(\Delta E \) is the energy difference between the donor and acceptor orbitals [14]. In principle, each of these parameters can be used to compare these interactions. NBO analysis results show distribution Mulliken atomic charges on the carbon atoms C\(_2\)H\(_4\), C\(_2\)F\(_4\) and C\(_2\)Cl\(_4\) structures are: -0.225877, 0.301096, and -0.824824, respectively. (See Table 4). This result is consistent with energy changes and hyperconjugative interactions because of the C-Cl bonds are better donors than other bonds in these molecules (See Table 5). The result obtained of NBO analysis is consistent with energy changes and hyperconjugative interactions because of the Sigma (\(\sigma \)) bonds of C-Cl have the largest interaction energy values in compared with other compounds bonds. So it can found that these bonds are better donors than other bonds in these molecules.

The analysis shows that C - H bond length in the optimized C\(_2\)H\(_4\) structure is shorter than C\(_2\)F\(_4\), C\(_2\)Cl\(_4\) because it has a positive natural charge on the H atom of the C\(_2\)H\(_4\) molecule in comparing with C\(_2\)F\(_4\) and C\(_2\)Cl\(_4\) structures. The relative of formed C-X (X=H, F, and Cl) bonds with can be illustrated as SP\(^{0.02}\), SP\(^{2.54}\) and Sp\(^{4.66}\) respectively. We observed that with increasing p character of the lone pair of existence C\(_2\)F\(_4\) and C\(_2\)Cl\(_4\) structures the occupancy decreases. The main natural bond orbitals (NBO) analysis showed that total stabilization energy for LP (X) \(\rightarrow \pi^* \) or \(\sigma^* \) delocalization increases with increasing p character of considering atoms lone pair [15]. In contrast, the occupancy of the LP(X) decreases with increasing p character of the lone pair of considering atoms. We show that the total stabilization energy for LP \(\rightarrow \sigma \) or \(\pi^* \) delocalization decrease with decreasing occupancy values is C\(_2\)F\(_4\) and C\(_2\)Cl\(_4\). Total stabilization energy value, also in the structure of C\(_2\)F\(_4\) agrees well with the relative calculated electronegativity value for this structure and this is a reason to increase the occupancy value in compared with the other two structures. In contrast, we note that each of which structures of the LP (3) F and Cl with 100 % p character has well donor–acceptor interactions in these structures. The results presented in (Table 6-9) show that the natural charge analysis of the compounds M\(_2\)X\(_4\) and M\(_2\)X\(_3\)Y (X=H, F, and Cl, Y=CH\(_3\), NH\(_2\), and OH) structures. As well as, the Elements from the halogen group including F and Cl have pretty high electronegativities that of the charge values increase along with electronegativity because the nature of the intense electron withdrawing of F atoms leads to an increase in self-centered electrons. Generally, the electronegativity of the M\(_2\)X\(_4\) and M\(_2\)X\(_3\)Y (X=H, F, and Cl, Y=CH\(_3\), NH\(_2\), and OH) increase with increasing occupancy value of C-X bonds. On the other hand, this trend is correlated the increase in the related total E2 values for donor-acceptor interactions in these compounds. Finally, Present studies demonstrated an increasing order of occupancy for M\(_2\)X\(_4\) and M\(_2\)X\(_3\)Y (X=H, F, and Cl, Y=CH\(_3\), NH\(_2\), and OH) due to the decreasing C-X bonds.
Table 4: (Mulliken atomic charges) of C\textsubscript{2}X\textsubscript{4} (X=H, F and Cl,) at MP2/6-311++g**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H</td>
<td>0.112938</td>
<td>1 F</td>
<td>-0.150548</td>
</tr>
<tr>
<td>2 C</td>
<td>-0.225877</td>
<td>2 C</td>
<td>0.301096</td>
</tr>
<tr>
<td>3 C</td>
<td>-0.225877</td>
<td>3 C</td>
<td>0.301096</td>
</tr>
<tr>
<td>4 H</td>
<td>0.112938</td>
<td>4 F</td>
<td>-0.150548</td>
</tr>
<tr>
<td>5 H</td>
<td>0.112938</td>
<td>5 F</td>
<td>-0.150548</td>
</tr>
<tr>
<td>6 H</td>
<td>0.112938</td>
<td>6 F</td>
<td>-0.150548</td>
</tr>
</tbody>
</table>

Table 5: The calculated natural charge of compounds M\textsubscript{2}X\textsubscript{4} and M\textsubscript{2}X\textsubscript{3}Y (X=H, F, and Cl, Y=CH\textsubscript{3}, NH\textsubscript{2}, and OH) at MP2/6-311++G**.

<table>
<thead>
<tr>
<th>Compounds Atom</th>
<th>CH\textsubscript{2}=CH\textsubscript{2}</th>
<th>C</th>
<th>CF\textsubscript{3}=CF\textsubscript{3}</th>
<th>C</th>
<th>CCl\textsubscript{3}=CCl\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsubstituted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.17081</td>
<td>C</td>
<td>-0.53488</td>
<td>Cl</td>
<td>0.07373</td>
</tr>
<tr>
<td>C</td>
<td>-0.34163</td>
<td>F</td>
<td>0.70975</td>
<td>C</td>
<td>-0.14747</td>
</tr>
<tr>
<td>substituted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH\textsubscript{3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 H</td>
<td>0.16736</td>
<td>F</td>
<td>-0.37137</td>
<td>Cl</td>
<td>0.05251</td>
</tr>
<tr>
<td>2 C</td>
<td>-0.14374</td>
<td>2 C</td>
<td>0.39323</td>
<td>2 C</td>
<td>0.01533</td>
</tr>
<tr>
<td>3 C</td>
<td>-0.37283</td>
<td>3 C</td>
<td>0.65190</td>
<td>3 C</td>
<td>-0.29282</td>
</tr>
<tr>
<td>4 H</td>
<td>0.17682</td>
<td>4 F</td>
<td>-0.36431</td>
<td>4 Cl</td>
<td>0.05591</td>
</tr>
<tr>
<td>5 H</td>
<td>0.16763</td>
<td>5 F</td>
<td>-0.40723</td>
<td>5 Cl</td>
<td>0.02040</td>
</tr>
<tr>
<td>NH\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 H</td>
<td>0.16415</td>
<td>F</td>
<td>-0.37580</td>
<td>Cl</td>
<td>0.03490</td>
</tr>
<tr>
<td>2 C</td>
<td>0.11236</td>
<td>2 C</td>
<td>0.53878</td>
<td>2 C</td>
<td>0.19583</td>
</tr>
<tr>
<td>3 C</td>
<td>-0.52811</td>
<td>3 C</td>
<td>0.67052</td>
<td>3 C</td>
<td>-0.24687</td>
</tr>
<tr>
<td>4 H</td>
<td>0.18583</td>
<td>4 F</td>
<td>-0.36709</td>
<td>4 Cl</td>
<td>0.04793</td>
</tr>
<tr>
<td>5 H</td>
<td>0.16967</td>
<td>5 F</td>
<td>-0.38493</td>
<td>5 Cl</td>
<td>0.01251</td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 H</td>
<td>0.15833</td>
<td>F</td>
<td>-0.36051</td>
<td>Cl</td>
<td>0.05749</td>
</tr>
<tr>
<td>2 C</td>
<td>0.26122</td>
<td>2 C</td>
<td>0.65212</td>
<td>2 C</td>
<td>0.32240</td>
</tr>
<tr>
<td>3 C</td>
<td>-0.52285</td>
<td>3 C</td>
<td>0.66814</td>
<td>3 C</td>
<td>-0.24670</td>
</tr>
<tr>
<td>4 H</td>
<td>0.19500</td>
<td>4 F</td>
<td>-0.35785</td>
<td>4 Cl</td>
<td>0.06561</td>
</tr>
<tr>
<td>5 H</td>
<td>0.17323</td>
<td>5 F</td>
<td>-0.38299</td>
<td>5 Cl</td>
<td>0.01834</td>
</tr>
<tr>
<td>6 OH</td>
<td>-0.132</td>
<td>6 OH</td>
<td>-0.109</td>
<td>6 OH</td>
<td>-0.109</td>
</tr>
</tbody>
</table>
Table 6: The Second-Order Perturbation Analysis of the “Hyperconjugative Interactions in (MP2/6-311++G**) \(\text{M}_2 \text{X}_4 \) (X=H, F, and Cl)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>(E^2) kcal/mol</th>
<th>(\Sigma E^2) Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_4)</td>
<td>BD (1) H1 - C2</td>
<td>1.98752</td>
<td>SP^{0.02}</td>
<td>BD*(1) C3 - H5</td>
<td>5.34</td>
<td>7.22</td>
</tr>
<tr>
<td></td>
<td>BD (2) C2 - C3</td>
<td>1.99613</td>
<td>SP^{1.45}</td>
<td>BD*(1) C2 – H6</td>
<td>0.98</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>BD (1) C 2 –H6</td>
<td>1.98752</td>
<td>SP^{2.36}</td>
<td>BD*(1) C3 – H4</td>
<td>5.34</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>BD (1) C3 – H4</td>
<td>1.98752</td>
<td>SP^{2.36}</td>
<td>BD*(1) C 2 –H6</td>
<td>5.34</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>BD (1) C3 – H5</td>
<td>1.98752</td>
<td>SP^{2.36}</td>
<td>BD*(2) C2 – C3</td>
<td>0.98</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\text{CF}_2=\text{CF}_2)</td>
<td>BD (1) F1 - C 2</td>
<td>1.99624</td>
<td>SP^{2.54}</td>
<td>BD*(1) C2 – F6</td>
<td>0.71</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>BD (1) C 2 – F6</td>
<td>1.99624</td>
<td>SP^{2.65}</td>
<td>BD*(1) C3 – F5</td>
<td>1.78</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>BD (1) C3 – F4</td>
<td>1.99624</td>
<td>SP^{2.65}</td>
<td>BD*(1) C2 – F6</td>
<td>1.78</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>BD (1) C3 – F5</td>
<td>1.99624</td>
<td>SP^{2.65}</td>
<td>BD*(1) C3 – F4</td>
<td>0.71</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (1) F 1</td>
<td>1.99332</td>
<td>SP^{0.39}</td>
<td>BD*(1) C2 – C3</td>
<td>0.82</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (2) F 1</td>
<td>1.95880</td>
<td>SP^{09.99}</td>
<td>BD*(1) C2 – C3</td>
<td>7.01</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (3) F 1</td>
<td>1.95294</td>
<td>p</td>
<td>BD*(2) C2 – C3</td>
<td>25.44</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (1) F 4</td>
<td>1.99332</td>
<td>SP^{0.39}</td>
<td>BD*(1) C2 – C3</td>
<td>0.82</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (2) F 4</td>
<td>1.95880</td>
<td>SP^{09.99}</td>
<td>BD*(1) C2 – C3</td>
<td>7.01</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (3) F 4</td>
<td>1.95294</td>
<td>SP^{1.00}</td>
<td>BD*(1) C2 – C3</td>
<td>25.44</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (1) F 5</td>
<td>1.99332</td>
<td>SP^{0.39}</td>
<td>BD*(1) C2 – C3</td>
<td>0.82</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (2) F 5</td>
<td>1.95880</td>
<td>SP^{09.99}</td>
<td>BD*(1) C2 – C3</td>
<td>7.01</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LP (3) F 5</td>
<td>1.95294</td>
<td>SP^{1.00}</td>
<td>BD*(1) C2 – C3</td>
<td>25.44</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>NBOs</td>
<td>Occupancy</td>
<td>Hybrid</td>
<td>Acceptor NBO</td>
<td>E^2 kcal/mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) Cl 1 - C 2</td>
<td>1.98706</td>
<td>Sp(^{4.66})</td>
<td>BD* (1) C2 - C 3</td>
<td>1.52</td>
<td>7.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C2 - Cl 6</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 5</td>
<td>5.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) C 2 – Cl 6</td>
<td>1.98706</td>
<td>Sp(^{2.57})</td>
<td>BD* (1) Cl1 - C 2</td>
<td>0.54</td>
<td>7.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C2 - C 3</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>5.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) C3 – Cl 4</td>
<td>1.98706</td>
<td>Sp(^{2.57})</td>
<td>BD* (1) C2 - C 3</td>
<td>1.52</td>
<td>7.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C2 - Cl 6</td>
<td>5.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 5</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) C 3 – Cl 5</td>
<td>1.98706</td>
<td>Sp(^{2.57})</td>
<td>BD* (1) Cl 1 - C 2</td>
<td>5.38</td>
<td>7.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C 2 - C 3</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.99181</td>
<td>Sp(^{0.22})</td>
<td>BD* (1) C2 - C 3</td>
<td>2.13</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 1</td>
<td>1.95998</td>
<td>Sp(^{0.22})</td>
<td>BD* (1) C2 - Cl 6</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>5.43</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 1</td>
<td>1.95998</td>
<td>Sp(^{99.99})</td>
<td>BD* (1) C2 - Cl 6</td>
<td>11.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 5</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 1</td>
<td>1.93552</td>
<td>Sp(^{1.00})</td>
<td>BD* (2) C2 - C 3</td>
<td>24.31</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.99181</td>
<td>Sp(^{0.22})</td>
<td>BD* (1) Cl 1 - C 2</td>
<td>0.86</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 4</td>
<td>1.99181</td>
<td>Sp(^{0.22})</td>
<td>BD* (1) C2 - C 3</td>
<td>1.52</td>
<td>8.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C2 - C 3</td>
<td>5.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 4</td>
<td>1.95998</td>
<td>Sp(^{99.99})</td>
<td>BD* (1) C2 - Cl 6</td>
<td>11.69</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 4</td>
<td>1.93552</td>
<td>Sp(^{1.00})</td>
<td>BD* (2) C2 - C 3</td>
<td>24.31</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C2 - C 3</td>
<td>2.13</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 5</td>
<td>1.99181</td>
<td>Sp(^{0.22})</td>
<td>BD* (1) C2 - Cl 6</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) Cl 1 - C 2</td>
<td>0.86</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 5</td>
<td>1.95998</td>
<td>Sp(^{99.99})</td>
<td>BD* (1) C2 - Cl 6</td>
<td>11.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) C3 - Cl 4</td>
<td>11.69</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 5</td>
<td>1.93552</td>
<td>Sp(^{1.00})</td>
<td>BD* (2) C2 - Cl 6</td>
<td>24.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) Cl 1 - C 2</td>
<td>11.69</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 6</td>
<td>1.99181</td>
<td>Sp(^{0.22})</td>
<td>BD* (1) C2 - C 3</td>
<td>5.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) Cl 1 - C 2</td>
<td>11.69</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 6</td>
<td>1.95998</td>
<td>Sp(^{99.99})</td>
<td>BD* (1) C2 - C 3</td>
<td>5.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD* (1) Cl 1 - C 2</td>
<td>11.69</td>
<td>17.89</td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 6</td>
<td>1.93552</td>
<td>Sp(^{1.00})</td>
<td>BD* (2) C2 - C 3</td>
<td>24.31</td>
<td>24.31</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Occupancy of natural orbitals (NBOs) and hybrids of C$_2$X$_3$CH$_3$(X=H, F, and Cl)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>E2 kcal/mol</th>
<th>ΣE2 Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$=CHCH$_3$</td>
<td>BD (1) H1 – C2</td>
<td>1.97935</td>
<td>SP$^0.09$</td>
<td>BD*(1) C 2 - C 3</td>
<td>0.98</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - H 4</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - H 5</td>
<td>5.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 6 - H 7</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>CF$_2$=CFCH$_3$</td>
<td>BD (1) C2 - C3</td>
<td>1.99148</td>
<td>SP$^1.53$</td>
<td>BD*(1) H 1 - C 2</td>
<td>1.35</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - C 6</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - H 4</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - H 5</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD (2) C 2 - C 3</td>
<td>1.98216</td>
<td>SP$^1.00$</td>
<td>BD*(1) C 6 - H 8</td>
<td>4.01</td>
<td>8.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 6 - H 9</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - C 3</td>
<td>2.61</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - H 4</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD (1) C2 - C6</td>
<td>1.98925</td>
<td>SP$^2.01$</td>
<td>BD*(1) C 6 - H 8</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 6 - H 9</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD (1) C3 - H4</td>
<td>1.98670</td>
<td>SP$^2.36$</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - C 6</td>
<td>6.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD (1) C3 - H5</td>
<td>1.98724</td>
<td>SP$^2.37$</td>
<td>BD*(1) H 1 - C 2</td>
<td>5.95</td>
<td>7.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - C 3</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD (1) C6 – H7</td>
<td>1.99082</td>
<td>SP$^3.22$</td>
<td>BD*(1) C 2 - C 3</td>
<td>4.98</td>
<td>4.98</td>
</tr>
<tr>
<td></td>
<td>BD (1) C6 – H8</td>
<td>1.98366</td>
<td>SP$^3.34$</td>
<td>BD*(1) C 2 - C 3</td>
<td>2.21</td>
<td>7.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BD*(2) C 2 - C 3</td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD (1) C6 – H9</td>
<td>1.99367</td>
<td>SP$^3.24$</td>
<td>BD*(1) C 2 - C 3</td>
<td>2.21</td>
<td>7.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>E2 kcal/mol</th>
<th>ΣE2 Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF$_2$=CFCH$_3$</td>
<td>BD (1) F1 - C 2</td>
<td>1.99321</td>
<td>SP$^2.33$</td>
<td>LP (2) C 6</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 3 - F 5</td>
<td>2.12</td>
<td>5.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 2 - C 6</td>
<td>0.52</td>
<td>7.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 3 - F 4</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 2 - C 6</td>
<td>4.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C 6 - H 8</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C 2 - C 3</td>
<td>4.80</td>
<td></td>
<td></td>
<td></td>
<td>20.19</td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 3 - F 4</td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 6 - H 8</td>
<td>3.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C 2 - C 3</td>
<td>8.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C3 - F4</td>
<td>8.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C3 - F5</td>
<td>1.17</td>
<td>3.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C6 – H8</td>
<td>1.34</td>
<td>7.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C 2 - C 3</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD(1) C 2 - C 6</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD*(1) C 6 - H 8</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor</td>
<td>Lewis-type NBOs</td>
<td>Occupancy</td>
<td>Hybrid</td>
<td>Acceptor NBO</td>
<td>E2 kcal/mol</td>
<td>ΣE2 Kcal/mol</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BD (1) Cl 1 – C2</td>
<td>CCl2=CCICH3</td>
<td>1.97920</td>
<td>SP4.46</td>
<td>BD*(1) C 2 - C 6</td>
<td>7.12</td>
<td>10.61</td>
</tr>
<tr>
<td>BD (1) C 2 - C 3</td>
<td>1.98846</td>
<td>SP1.51</td>
<td>BD*(1) C 1 - C 2</td>
<td>0.66</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>BD (2) C 2 - C 3</td>
<td>1.98309</td>
<td>SP1.00</td>
<td>BD*(2) C 2 - C 3</td>
<td>0.81</td>
<td>14.72</td>
<td></td>
</tr>
<tr>
<td>BD (1) C 2 - C 6</td>
<td>1.96557</td>
<td>SP1.74</td>
<td>BD*(1) C 1 - C 2</td>
<td>6.99</td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>BD (1) C 3 – Cl 4</td>
<td>1.99077</td>
<td>SP2.28</td>
<td>BD*(1) C 2 - C 3</td>
<td>2.34</td>
<td>6.31</td>
<td></td>
</tr>
<tr>
<td>BD (1) C 3 – Cl 5</td>
<td>1.98549</td>
<td>SP11.63</td>
<td>BD*(1) C 1 - C 2</td>
<td>6.99</td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>BD (1) C6 – H8</td>
<td>1.98040</td>
<td>SP2.21</td>
<td>BD*(1) C 1 - C 2</td>
<td>1.08</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td>BD (1) C6 – H9</td>
<td>1.99001</td>
<td>SP3.19</td>
<td>BD*(1) C 1 - C 2</td>
<td>2.08</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 1</td>
<td>1.99239</td>
<td>SP0.22</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.30</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 1</td>
<td>1.96844</td>
<td>SP99.99</td>
<td>BD*(2) C 2 - C 3</td>
<td>22.37</td>
<td>22.37</td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Occupancy of natural orbitals (NBOs) and hybrids of C\textsubscript{2}X\textsubscript{3}NH\textsubscript{2}(X=H, F, and Cl)

| Compound |
|-----------------|-----------------|-----------------|-----------------|
| Donor Lewis-type NBOs | Occupancy | Hybrid | Acceptor NBO | E\textsubscript{2} kcal/mol | ΣE\textsubscript{2} Kcal/mol |
| LP (1) Cl 4 | 1.99261 | SP0.22 | BD*(1) C 2 - C 3 | 3.43 | 5.08 |
| LP (2) Cl 4 | 1.96107 | SP | BD*(1) C 2 - C 3 | 5.51 | 36.20 |
| LP (3) Cl 4 | 1.95329 | SP0.35 | BD*(1) C 2 - C 3 | 14.94 | |
| LP (1) Cl 5 | 1.99291 | SP11.63 | BD*(1) C 2 - C 3 | 0.64 | |
| LP (2) Cl 5 | 1.96918 | P | BD*(1) C 2 - C 3 | 2.13 | 2.77 |
| LP (3) Cl 5 | 1.88397 | SP11.63 | BD*(1) C 2 - C 3 | 2.84 | 13.2* |
| LP (1) C 6 | 1.73446 | P | BD*(1) C 2 - C 3 | 9.48 | |

| Compound |
|-----------------|-----------------|-----------------|-----------------|
| Donor Lewis-type NBOs | Occupancy | Hybrid | Acceptor NBO | E\textsubscript{2} kcal/mol | ΣE\textsubscript{2} Kcal/mol |
| BD (1) H1-C2 | 1.97758 | SP0.1 | BD*(1) C 2 - C 3 | 1.35 | |
| BD (1) C2 - C3 | 1.98981 | SP1.36 | BD*(1) C 3 - H 4 | 0.89 | |
| BD (1) C2 - C3 | 1.98981 | SP1.36 | BD*(1) C 3 - H 5 | 4.99 | 12.56 |
| BD (1) C2 - C3 | 1.99333 | P | BD*(1) C 3 - H 5 | 4.54 | |
| BD (1) C2 - C3 | 1.99524 | SP2.37 | BD*(1) C 3 - H 5 | 1.66 | |
| BD (1) C2 - C3 | 1.98699 | SP2.28 | BD*(1) C 3 - H 6 | 2.42 | |
| BD (1) C2 - C3 | 1.99233 | P | BD*(1) C 3 - H 8 | 0.75 | |
| BD (1) C3 - H4 | 1.98457 | SP2.26 | BD*(1) C 3 - H 9 | 1.14 | 8.43 |
| BD (1) C3 - H5 | 1.98699 | SP2.28 | BD*(1) C 3 - H 5 | 2.85 | |
| BD (1) C3 - H5 | 1.99291 | SP1.39 | BD*(1) C 3 - H 6 | 1.81 | |
| BD (1) C3 - H5 | 1.99291 | SP1.39 | BD*(1) C 3 - H 8 | 1.81 | |
| BD (1) N6 – H7 | 1.99209 | SP2.35 | BD*(1) C 3 - H 2 | 2.30 | |
| BD (1) N6 – H8 | 1.99273 | SP2.34 | BD*(1) C 3 - H 2 | 1.32 | |
| BD (1) N6 – H8 | 1.99273 | SP2.34 | BD*(1) C 3 - H 2 | 4.01 | |
| BD (1) C6 | 1.86249 | P | BD*(1) C 3 - H 2 | 24.80 | |
| LP (1) N 6 | 1.86249 | P | BD*(1) C 3 - H 2 | 2.18 | |
| BD (1) F1 – C2 | 1.99468 | SP2.40 | BD*(1) C 3 - F 5 | 2.01 | |
| BD (1) C2 - C3 | 1.99229 | SP1.39 | BD*(1) C 2 - N 6 | 2.85 | |
| BD (1) C2 - N 6 | 1.99150 | P | BD*(1) C 2 - N 6 | 2.54 | |
| BD (1) C2 - N 6 | 1.99150 | P | BD*(1) C 2 - N 6 | 2.40 | |
| BD (1) C3 - F 4 | 1.99625 | SP2.67 | BD*(1) C 2 - F 5 | 0.75 | |
| BD (1) C3 - F 4 | 1.99625 | SP2.67 | BD*(1) C 2 - F 5 | 1.91 | |
CF₂=CFNH₂

<table>
<thead>
<tr>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>E2 kcal/mol</th>
<th>ΣE2 Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD (1) C3 - F 5</td>
<td>1.99563</td>
<td>SP².84</td>
<td>BD*(1) C 3 - F 5</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>BD (1) N6 - H 7</td>
<td>1.98916</td>
<td>SP².14</td>
<td>BD*(1) C 1 - C 2</td>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>BD (1) N6 - H 8</td>
<td>1.99105</td>
<td>SP².16</td>
<td>BD*(1) C 1 - C 2</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>LP (1) F 1</td>
<td>1.99270</td>
<td>SP².42</td>
<td>BD*(1) C 2 - N 6</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>LP (2) F 1</td>
<td>1.97203</td>
<td>SP⁰.99</td>
<td>BD*(1) C 2 - N 6</td>
<td>9.74</td>
<td></td>
</tr>
<tr>
<td>LP (3) F 1</td>
<td>1.95626</td>
<td>P</td>
<td>BD*(2) C 2 - C 3</td>
<td>24.30</td>
<td></td>
</tr>
<tr>
<td>LP (1) F 4</td>
<td>1.99327</td>
<td>SP⁰.40</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LP (2) F 4</td>
<td>1.96068</td>
<td>P</td>
<td>BD*(2) C 2 - C 3</td>
<td>21.37</td>
<td></td>
</tr>
<tr>
<td>LP (3) F 4</td>
<td>1.95900</td>
<td>SP⁰.99</td>
<td>BD*(1) C 2 - C 3</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td>LP (1) F 5</td>
<td>1.99360</td>
<td>SP⁰.40</td>
<td>BD*(1) C 2 - C 3</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>LP (2) F 5</td>
<td>1.96323</td>
<td>P</td>
<td>BD*(2) C 2 - C 3</td>
<td>19.86</td>
<td></td>
</tr>
<tr>
<td>LP (3) F 5</td>
<td>1.96236</td>
<td>SP⁰.99</td>
<td>BD*(1) C 2 - C 3</td>
<td>5.78</td>
<td></td>
</tr>
<tr>
<td>LP (1) N 6</td>
<td>1.88429</td>
<td>P</td>
<td>BD*(2) C 2 - C 3</td>
<td>52.98</td>
<td></td>
</tr>
</tbody>
</table>

CCl₂=CCNH₂

<table>
<thead>
<tr>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>E2 kcal/mol</th>
<th>ΣE2 Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD (1) Cl 1 – C2</td>
<td>1.98318</td>
<td>Sp¹.62</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>BD (1) C2 - C3</td>
<td>1.98977</td>
<td>SP¹.32</td>
<td>BD*(1) C 3 - Cl 5</td>
<td>5.27</td>
<td></td>
</tr>
<tr>
<td>BD (1) C2 – N6</td>
<td>1.99119</td>
<td>SP¹.15</td>
<td>BD*(1) C 3 - Cl 4</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>BD (1) C3 – Cl 4</td>
<td>1.99004</td>
<td>SP².43</td>
<td>BD*(1) C 2 - C 3</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>BD (1) C3 - Cl 5</td>
<td>1.98609</td>
<td>SP².68</td>
<td>BD*(1) C 3 - Cl 4</td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>BD (1) N6 - H7</td>
<td>1.98658</td>
<td>SP².22</td>
<td>BD*(1) C 2 - C 3</td>
<td>6.78</td>
<td></td>
</tr>
<tr>
<td>BD (1) N6 - H8</td>
<td>1.99192</td>
<td>SP².28</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 1</td>
<td>1.99336</td>
<td>SP².21</td>
<td>BD*(1) C 2 - C 3</td>
<td>5.82</td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 1</td>
<td>1.96736</td>
<td>SP⁰.99</td>
<td>BD*(1) C 2 - C 3</td>
<td>5.48</td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 1</td>
<td>1.94023</td>
<td>P</td>
<td>BD*(2) C 2 - C 3</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 4</td>
<td>1.99280</td>
<td>SP².23</td>
<td>BD*(1) C 2 - C 3</td>
<td>2.38</td>
<td></td>
</tr>
</tbody>
</table>
Table 9: Occupancy of natural orbitals (NBOs) and hybrids of C$_2$X$_3$OH (x=H, F, and Cl)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>E_2 kcal/mol</th>
<th>ΣE_2 Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD (1) H$_1$ – C2</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.98014</td>
<td>S</td>
<td>BD* (2) C 2 - C 3</td>
<td>1.2^A</td>
<td>11.46</td>
</tr>
<tr>
<td>BD (1) C$_2$ - C$_3$</td>
<td>BD*(1) C 2 - O 6</td>
<td>0.58</td>
<td>BD*(1) C 3 - H 4</td>
<td>1.2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_2$ - O$_6$</td>
<td>BD*(1) O 6 - H 7</td>
<td>3.48</td>
<td>BD*(1) O 6 - H 7</td>
<td>3.48</td>
<td>11.96</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_3$ - H$_4$</td>
<td>BD*(1) H 1 - C 2</td>
<td>1.66</td>
<td>BD*(2) C 2 - C 3</td>
<td>1.22</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_3$ - H$_5$</td>
<td>BD*(1) C 3 - H 4</td>
<td>1.96</td>
<td>BD*(2) C 2 - C 3</td>
<td>1.96</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>BD (1) O$_6$ – H$_7$</td>
<td>BD*(1) H 1 - C 2</td>
<td>1.23</td>
<td>BD*(2) C 2 - C 3</td>
<td>1.23</td>
<td>3.97</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Donor Lewis-type NBOs</th>
<th>Occupancy</th>
<th>Hybrid</th>
<th>Acceptor NBO</th>
<th>E_2 kcal/mol</th>
<th>ΣE_2 Kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD (1) F$_1$ – C2</td>
<td>BD*(1) C 3 - F 5</td>
<td>1.96</td>
<td>BD*(1) O 6 - H 7</td>
<td>1.96</td>
<td>3.0^A</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_2$ - C$_3$</td>
<td>BD*(1) C 2 - O 6</td>
<td>1.96</td>
<td>BD*(1) C 2 - O 6</td>
<td>1.96</td>
<td>3.0^A</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_2$ - C$_3$</td>
<td>BD*(1) O 6 - H 7</td>
<td>1.7</td>
<td>BD*(1) O 6 - H 7</td>
<td>1.7</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>BD (2) O$_6$ – F$_4$</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.23</td>
<td>BD*(2) C 2 - C 3</td>
<td>1.23</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>LP (1) O 6</td>
<td>BD*(1) C 2 - C 3</td>
<td>2.18</td>
<td>BD*(2) C 2 - C 3</td>
<td>2.18</td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_3$ - F$_4$</td>
<td>BD*(1) C 3 - F 5</td>
<td>0.67</td>
<td>BD*(1) C 3 - F 5</td>
<td>0.67</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>BD (1) C$_3$ - F$_4$</td>
<td>BD*(1) C 3 - F 5</td>
<td>0.80</td>
<td>BD*(1) C 3 - F 5</td>
<td>0.80</td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>Donor Lewis-type NBOs</td>
<td>Occupancy</td>
<td>Hybrid</td>
<td>Acceptor NBO</td>
<td>E2 kcal/mol</td>
<td>ΣE2 Kcal/mol</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>BD (1) C11 – C2</td>
<td>1.98329</td>
<td>SP3.72</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.48</td>
<td>6.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 5</td>
<td>5.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) C2 - C3</td>
<td>1.99434</td>
<td>SP1.23</td>
<td>BD*(1) Cl 1 - C 2</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - O 6</td>
<td>1.47</td>
<td>▼5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 4</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (2) C2 - C3</td>
<td>1.98600</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BD (1) C2 – O6</td>
<td>1.99366</td>
<td>SP2.58</td>
<td>BD*(1) C 2 - C 3</td>
<td>2.34</td>
<td>5.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 4</td>
<td>3.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) C3 - Cl4</td>
<td>1.98976</td>
<td>SP2.37</td>
<td>BD*(1) Cl 1 - C 2</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - O 6</td>
<td>4.60</td>
<td>5.9v</td>
<td></td>
</tr>
<tr>
<td>BD (1) C3 – Cl5</td>
<td>1.98672</td>
<td>SP2.69</td>
<td>BD*(1) C 2 - C 3</td>
<td>5.82</td>
<td>6.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 5</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD (1) O 6 – H7</td>
<td>1.98052</td>
<td>Sp3.75</td>
<td>BD*(2) Cl 1 - C 2</td>
<td>8.16</td>
<td>8.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 4</td>
<td>5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (1) Cl 1</td>
<td>1.99393</td>
<td>SP0.21</td>
<td>BD*(1) C 2 - C 3</td>
<td>1.76</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - O 6</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 5</td>
<td>▼0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 1</td>
<td>1.96115</td>
<td>SP0.99</td>
<td>BD*(1) Cl 1 - C 2</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - O 6</td>
<td>0.74</td>
<td>▼0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 5</td>
<td>13.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 1</td>
<td>1.93239</td>
<td>P</td>
<td>BD*(2) C 2 - C 3</td>
<td>26.87</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - C 3</td>
<td>2.21</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>LP (2) Cl 2</td>
<td>1.95613</td>
<td>SP7.31</td>
<td>BD*(1) Cl 1 - C 2</td>
<td>1.67</td>
<td>19.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - O 6</td>
<td>5.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 5</td>
<td>▼0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP (3) Cl 2</td>
<td>1.95007</td>
<td>P</td>
<td>BD*(2) Cl 1 - C 2</td>
<td>19.88</td>
<td>19.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 2 - C 3</td>
<td>▼0.45</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BD*(1) C 3 - Cl 5</td>
<td>▼0.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NMR chemical tensors

The NMR parameters play an important role in studying the molecular structure of compounds. In this work, theoretical studies of NMR properties have been investigated for C2X4 (X=H, F, and Cl). Table 11 represents the results of NMR shielding tensors of F and Cl atoms in all structures, according to the table it is clear F and Cl substituted which have similar chemical shielding, also provide the same value of asymmetry. It can be noted that C2Cl4 is higher than C2F4 of the chemical shielding and asymmetry. This shows when low shielding that electronegativity has the largest value. According to the results from NBO interpretation of the C2Cl4 and C2F4 are reported of the lone pair electrons of C2F4 have major occupancy than the C2Cl4. Table 10 indicates that F and Cl in same position 4 at the C2Cl3CH3 or C2F3CH3 had higher chemical shielding and lower asymmetry. It can also be concluded that presence of CH3 in substitute at the C2Cl3CH3 or C2F3CH3 has an impressive effect on the chemical shielding Cl atom and this result with agreeing of C2Cl3NH2 or C2F3NH2. The following up, the C2X3 OH (X= F, and Cl) molecules, show that they have the most chemical shielding in position 5 because it has the highest total resonant energy in the bond that related to LP(3) F5 →σ*(F 1 - C 2), (C 2 - C 3) and (C 3 - F 4). Our findings demonstrate that the trend of the electron donors with chemical shielding have a same interacting order of OH >NH2> CH3. Furthermore, the electronegativity is related directions with chemical shielding.

Table 10: NMR parameters of C2X3Y (X=H, F, and Cl, Y=CH3, NH2 and OH) at MP2/6-311++g**
HOMO- LUMO analysis

The HOMO- LUMO, frontier molecular orbitals are important components and the HOMO-LUMO energy difference (ΔE) is a measure of the intramolecular charge transfer and was used in biological activity studies [16]. The HOMO is the orbital that primarily acts as an electron donor and the LUMO is the orbital that largely acts as the electron acceptor. The MOs are defined as eigen functions of the Fock operator, which exhibits the full symmetry of the nuclear point group, they necessarily form a basis for irreducible representations of full point-group symmetry. [17]. According to energies of the HOMO and LUMO orbital’s related to the ionization potential (IP) and electron affinities (EA) [18- 21] as in any Eqs.5 and 6.

\[IP = -E_{HOMO} \]
\[EA = -E_{LUMO} \]

By using these HOMO–LUMO energy values, the important properties like electronegativity (\(\chi\)), chemical potential (\(\mu\)), Chemical hardness (\(\eta\)), Global softness (\(\sigma\)) and electrophilicity index (\(\omega\)) were calculated.

\[\chi = \frac{(IP + EA)}{2} \quad \mu = -\frac{(IP + EA)}{2} \quad \eta = \frac{(IP - EA)}{2} \quad \sigma = \frac{1}{\eta} \quad \omega = \frac{\mu^2}{2\eta} \]

Table 11 indicates that the CCl\(_2\) = CCl\(_2\) and CF\(_2\) = CF\(_2\) have the lowest and the highest values of \(E_{HOMO}\) and \(E_{LUMO}\), respectively. Therefore, CF\(_2\)=CF\(_2\) system has more electrophilic than CH\(_2\) =
CH$_2$ and CCl$_2$ = CCl$_2$ structures. Generally, we defined the electrophilicity as the ability of the molecule to accept electrons. The electrophilicity for CF$_2$=CF$_2$, CCl$_2$ = CCl$_2$, and CH$_2$ = CH$_2$ are 0.0303, 0.0551, and 0.0651, respectively. Well, known which molecules with larger HOMO-LUMO gap have kinetic stability and lower chemical reactivity. In the present study, the HOMO-LUMO gap are 0.519184, 0.395324 and 0.441977 eV in order: CF$_2$=CF$_2$ > CH$_2$ = CH$_2$ > CCl$_2$ = CCl$_2$. Thus, our calculations show that CCl$_2$ = CCl$_2$ compound is more reactive than CH$_2$ = CH$_2$ and CF$_2$=CF$_2$ structures due to it has a small HOMO-LUMO gap (see Fig. 2). The ionization potential (IP) is a basic description of the chemical reactivity of atoms and molecules. The slightly higher IP for CH$_2$ = CH$_2$ molecule pertains to strong stability.

The energy gap for the molecules obtained by replacing the CH$_3$, NH$_2$ and OH groups in the C$_2$H$_4$ molecule showed that the replacement of OH group in the ethylene molecule caused a significant reduction in the energy gap compared to the replacement of the CH$_3$ and NH$_2$ gaps. Also, the energy gap for molecules studied by replacing CH$_3$, NH$_2$ and OH groups in C$_2$F$_4$ indicates that the replacement of CH$_3$ group in the molecule significantly reduces the energy gap to replace the chains of CH$_3$ and NH$_2$. Finally, the study of the energy gap in molecules derived from replacing CH$_3$, NH$_2$ and OH in the C$_2$Cl$_4$ molecule showed that the CH$_3$ substitution in the molecule is larger than the replacement of OH and NH$_2$ in the C$_2$Cl$_4$ molecule.

As a result, the energy gap in all molecules, including molecules non-substituted and substituted by groups with similar function, show that the energy gap in the free molecule C$_2$F$_4$ is more than other molecules, which indicates the interaction of the charge transfer in the desired molecule and agrees with the stabilization energy (E2).
Figure 2. Representation of the frontier molecular orbital in the all of these structures

Table 11: The values of parameters of C₂X₄ (X=H, F, and Cl) and C₂X₃Y (X=H, F, and Cl, Y=CH₃, NH₂ and OH) at MP2/6-311++g**

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Substituent</th>
<th>HOMO</th>
<th>LUMO</th>
<th>Gap</th>
<th>IP</th>
<th>EA</th>
<th>η</th>
<th>ζ</th>
<th>ω</th>
<th>σ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂=CH₂</td>
<td></td>
<td>-0.38590</td>
<td>0.056074</td>
<td>0.441977</td>
<td>0.385903</td>
<td>-0.056074</td>
<td>0.220989</td>
<td>0.164915</td>
<td>0.0615</td>
<td>4.5251</td>
<td>-0.164915</td>
</tr>
<tr>
<td>CF₂=CF₂</td>
<td></td>
<td>-0.38493</td>
<td>0.134249</td>
<td>0.519184</td>
<td>0.384935</td>
<td>-0.134249</td>
<td>0.259592</td>
<td>0.125343</td>
<td>0.0303</td>
<td>3.5822</td>
<td>-0.125343</td>
</tr>
<tr>
<td>CH₂=CH (NH₂)</td>
<td></td>
<td>-0.34521</td>
<td>0.050109</td>
<td>0.395324</td>
<td>0.345215</td>
<td>-0.050109</td>
<td>0.197662</td>
<td>0.147553</td>
<td>0.0551</td>
<td>5.0591</td>
<td>-0.147553</td>
</tr>
</tbody>
</table>
Conclusions

Theoretical calculation with the goal of conscious response was performed to compare the stability of the combinations of C_2X_4 (X = H, F, and Cl) and some of their derivatives. The results reveal that the optimized structural parameters agree well with calculated energies. The total stability energy values for LP (Fs) → σ* and π* delocalization are more than LP (Cls) → σ* and π*. Total stabilization energy for LP (F) → σ* and π* delocalization increases with increasing p character of flour lone pair. We also found that the occupancy values of flour lone pair (3) play a key role in the determination of chemical shielding and it is in relatively good agreement with electron-withdrawing ability, i.e. whatever extent the electronegativities of groups’ substituent (CH_3, NH_2, and OH) increase in the same direction increasing the chemical shielding the reason for this trend the energy of the total resonance interactions increases upon related bands. Therefore, considering the substituent effect, the Møller-Plesset-Type (MP2) coupled-cluster calculations suggest that the more strongly electron-withdrawing the substituent, the higher occupancy value of C-X bonds in the M_2X_4 molecules. For instance, because the electron-withdrawing ability is ordered F > Cl > H > which has a better correlation with the electronic chemical potential and plays a crucial role in determining the reactivity and it suggested that chemical potential provides a new basis for explaining chemical reactions through the process of charge transfer.
References

How to Cite This Article