TY - JOUR ID - 244676 TI - Adsorption of procarbazine anti-cancer Drug on the Surface of graphene: A DFT Study JO - International Journal of New Chemistry JA - IJNC LA - en SN - 2645-7237 AU - Farhang Rik, Behnam AU - ranjineh khojasteh, Roya AU - Ahmadi, Roya AD - Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran AD - Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran Y1 - 2021 PY - 2021 VL - 8 IS - 4 SP - 485 EP - 497 KW - Procarbazine KW - anticancer drugs KW - Functional density theory KW - Graphene DO - 10.22034/ijnc.2021.533255.1167 N2 - The present study aimed to assess the adsorption of graphene with anticancer drug procarbazine in a gas and solvent phase (water) at the B3LYP/6-31G (d) theoretical level. Initially, the structures of procarbazine and graphene complexes were optimized in three configurations. Afterwards, IR calculations and molecular orbital analysis were performed. In addition, some important parameters were assessed, including the adsorption energy, Gibbs free energy changes (ΔGad), enthalpy (ΔHad) variations, thermodynamic equilibrium constant, specific heat capacity, chemical hardness, energy gap, and electrophilicity. According to the results, Gibbs free energy changes (ΔGad), enthalpy (ΔHad) variations, I-Isomer and II-Isomer and III-Isomer were negatives at various temperatures, throughout the temperature range of 298.15-310.15 K. Since according to the obtained results for adsorption of procarbazine on the graphene in I-Isomer and II-Isomer and III-Isomer were spontaneous at various temperatures, throughout the temperature range of 298.15-310.15 K. Structural properties calculated, including the density and length of C-N bonds, and the findings of the analysis of molecular orbitals indicated that the reactivity, electrophilicity, and conductivity of procarbazine are reduced after this reaction. Also the calculated specific heat capacity values indicated that graphene could be utilized as a sensing material in the construction of thermal biosensors for procarbazine determination. UR - https://www.ijnc.ir/article_244676.html L1 - https://www.ijnc.ir/article_244676_65838fc791cf25c2b66f37e794edea51.pdf ER -