ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

1 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

2 M. A. In Analytical chemistry, Technical assistant of Jestar Sanat Company, No.28, Gilan St, Tehran, Iran

3 Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya

Abstract

In this research, IR and frontier molecular orbital computations were employed for investigating the influence of B12N12 on the energetic and thermodynamic parameters of TATB. The Computed enthalpy changes and Gibbs free energy variations showed TATB interaction with this nanostructure is exothermic, spontaneous and experimentally possible. The specific heat capacity values (CV) revealed the heat sensitivity of TATB has improved sharply after its interaction with BN nanocage. Some structural features like bandgap, chemical hardness, chemical potential, electrophilicity and maximum transferred charge capacity were also computed and the results indicated that the reactivity, conductance and electrophilicity of TATB enhances substantially after its reaction with B12N12. All of the computation were done by density functional theory in the B3LYP/6-31G(d) level of theory. 

Keywords

      [1]       R. Ahmadi, M. R. Jalali Sarvestani, Iran. Chem. Commun., 7, 344 (2019).
      [2]       M. R. Jalali Sarvestani, R. Ahmadi, J. Phys. Theor. Chem. IAU, Iran., 15, 15 (2018).
      [3]       R. Ahmadi, M. R. Jalali Sarvestani, Int. J. Nano. Dimens., 9, 325 (2018).
      [4]       Nanotube Modeler. J. Crystal. Soft., 2014 software.
      [5]       G. Mahmoudzadeh, Int. J. New. Chem., 6, 277 (2019).
      [6]       M. Nabati, V. Bodaghi-Namileh, Int. J. New. Chem., 6, 254 (2019).
      [7]       J. Beheshtian, A. A. Peyghan, Z. Bagheri, Appl. Surf. Sci., 258, 8980 (2012).
      [8]       M. Rezaei Sameti, S. Azadi Doureh, Int. J. New. Chem., 6, 109 (2019).
      [9]       A. Mohasseb, Int. J. New. Chem., 6, 215 (2019).
     [10]     S. Sadeghi, A. Z. Moghaddam, Anal. Methods., 6, 4867 (2014).
     [11]      I. Narin, A. Kars, M. Soylak, J. Hazard. Mater., 150, 453 (2008).
     [12]     M. Tuzen, M. Soylak, J. Hazard. Mater., 147, 219 (2007).
     [13]       D. Han, K. H. Row, Microchimica Acta., 176, 1 (2012).
     [14]     T. A. Demissie, F. Saathoff, Y. Sileshi, A. Gebissa, European Int. J. Sci. Technol., 2, 63 (2013).
     [15]     H. M. I. K. Ajoy,  S. Halima, Asian. J. Phys. Chem., 5, 1 (2018).
     [16]     S. B. Zineb Almi, T. Lanez, N. Tchouar.  Int. lett. chem. phys. astron., 37, 113 (2011).
     [17]     J. Guan, G. Li, Am. J. Public Health., 107, 791 (2017).
     [18]     A. Mustafa, A. A. J. Zahran, Chem. Eng. Data., 8, 135 (1963).
     [19]     R. Ahmadi, Int. J. Nano. Dimens., 8, 250 (2017).
     [20]     Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.