ISC, DOAJ, CAS, Google Scholar......

Document Type : Review

Authors

Department of Chemistry, Faculty of Sciences, Shahid Beheshti University

Abstract

HO enzyme catalyzes the degradation of free heme to biliverdin, CO, and Fe in three consecutive steps. The up-regulated activity of heme oxygenase is thought to be correlated with the antioxidant role of HO-1 in an oxidative stress environment. HO enzyme regiospecificity oxidizes heme at α meso position in a three oxygenation steps process. Although hydroperoxy-ferric heme, generated in the first step, has been indicated as an intermediate in most heme enzyme, heme degradation is only occurred in HO reaction. Therefore, a different mechanism from the other heme enzymes must be responsible for the heme hydroxylation in HO-catalyzed reaction in the first step. In the second step of the process, there are also uncertainties regarding electron requirement and a binding site for O2 molecule. In this article, we review researchers’ attempts to elucidate complicated heme catabolism mechanism, especially in the less known process steps which have been done to shed light on the determinants of specificity and better contribute to developing new medicines. Special focus is placed on the experimental and theoretical studies on the structural characteristics and electronic configurations of heme catabolism intermediates catalyzed by HO. The fascinating electronic communication between the metal and the ring in this process has been discussed, as well. An overview of the non- precedent route for the direct conversion of oxophlorin to biliverdin is also presented.

Keywords

Main Subjects

  1. Yoshida, T., and Sato, M. Posttranslational and direct integration of heme oxygenase into microsomes, Biochemical and Biophysical Research Communications, 163, 1086 (1989).
  2. McCoubrey, W. K., and Maines, M. D. Domains of Rat Heme Oxygenase-2: The Amino Terminus and Histidine 151 Are Required for Heme Oxidation, Archives of Biochemistry and Biophysics, 302, 402 (1993).
  3. Dennery, P. A. Signaling function of heme oxygenase proteins, Antioxidants & redox signaling, 20, 1743 (2014).
  4. Bilban, M., Haschemi, A., Wegiel, B., Chin, B. Y., Wagner, O., and Otterbein, L. E. Heme oxygenase and carbon monoxide initiate homeostatic signaling, Journal of Molecular Medicine, 86, 267 (2008).
  5. Motterlini, R., and Otterbein, L. E. The therapeutic potential of carbon monoxide, Nature reviews Drug discovery, 9, 728 (2010).
  6. Ganz, T. Systemic Iron Homeostasis, Physiological Reviews, 93, 1721-1741, 2013).
  7. Gozzelino, R., and Arosio, P. Iron homeostasis in health and disease, International journal of molecular sciences, 17, 130 (2016).
  8. Naito, Y., Takagi, T., and Higashimura, Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages, Archives of Biochemistry and Biophysics, 564, 83 (2014).
  9. Nath, K. A. Heme oxygenase-1 and acute kidney injury, Current opinion in nephrology and hypertension, 23, 17 ( 2014).
  10. Barone, E., Di Domenico, F., Mancuso, C., and Butterfield, D. A. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation, Neurobiology of disease, 62, 144 (2014).
  11. Tian, F., Zhang, F., Lai, X., Wang, L., Yang, L., Wang, X., Singh, G., and Zhong, J. L. L. Nrf2-mediated protection against UVA radiation in human skin keratinocytes, Bioscience trends, 5, 23 (2011).
  12. Wu, M.-L., Ho, Y.-C., and Yet, S.-F. A central role of heme oxygenase-1 in cardiovascular protection, Antioxidants & redox signaling, 15, 1835 (2011).
  13. Jansen, T., Hortmann, M., Oelze, M., Opitz, B., Steven, S., Schell, R., Knorr, M., Karbach, S., Schuhmacher, S., and Wenzel, P. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1—evidence for direct and indirect antioxidant actions of bilirubin, Journal of molecular and cellular cardiology, 49, 186 (2010).
  14. Gazzin, S., Vitek, L., Watchko, J., Shapiro, S. M., and Tiribelli, C. A novel perspective on the biology of bilirubin in health and disease, Trends in Molecular Medicine, 22, 758 (2016).
  15. Hamoud, A.-R., Weaver, L., Stec, D. E., and Hinds Jr, T. D. Bilirubin in the liver–gut signaling Axis, Trends in Endocrinology & Metabolism, 29, 140 (2018).
  16. Ziberna, L., Martelanc, M., Franko, M., and Passamonti, S. Bilirubin is an endogenous antioxidant in human vascular endothelial cells, Scientific reports, 6, 29240 (2016).
  17. Zelenka, J., Muchova, L., Zelenkova, M., Vanova, K., Vreman, H. J., Wong, R. J., and Vitek, L. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress, Biochimie, 94, 1821 (2012).
  18. Müllebner, A., Moldzio, R., Redl, H., Kozlov, A. V., and Duvigneau, J. C. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin, Biomolecules, 5, 679 (2015).
  19. Chau, L.-Y. Heme oxygenase-1: emerging target of cancer therapy, Journal of Biomedical Science, 22, 22 (2015).
  20. Roy-Chowdhury, N., Wang, X., and Roy-Chowdhury, J. Bile pigment metabolism and its disorders, In Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics, 507 (2020).
  21. Watchko, J. F., and Tiribelli, C. Bilirubin-Induced Neurologic Damage — Mechanisms and Management Approaches, New England Journal of Medicine, 369, 2021 (2013).
  22. Watchko, J. F. Bilirubin-induced neurotoxicity in the preterm neonate, Clinics in perinatology, 43, 297 (2016).
  23. Amin, S. B., Saluja, S., Saili, A., Orlando, M., Wang, H., Laroia, N., and Agarwal, A. Chronic auditory toxicity in late preterm and term infants with significant hyperbilirubinemia, Pediatrics, 140, e20164009 (017).
  24. Chiang, S.-K., Chen, S.-E., and Chang, L.-C. A dual role of Heme Oxygenase-1 in cancer cells, International journal of molecular sciences, 20, 39 (2019).
  25. Schipper, H., and Song, W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders, International journal of molecular sciences, 16, 5400 (2015).
  26. Pittala, V., Salerno, L., Romeo, G., N Modica, M., and A Siracusa, M. A focus on heme oxygenase-1 (HO-1) inhibitors, Current Medicinal Chemistry, 20, 3711 (2013).
  27. Schulz, S., Wong, R. J., Vreman, H. J., and Strevenson, D. K. Metalloporphyrins–an update, Frontiers in pharmacology, 3, 68(2012).
  28. Wagner, K., Hua, Y., Broderick, J., Nishimura, R., Lu, S., and Dwyer, B. Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies, Cellular and molecular biology (Noisy-le-Grand, France), 46, 597(2000).
  29. Bhutani, V., Poland, R., Meloy, L., Hegyi, T., Fanaroff, A., and Maisels, M. Clinical trial of tin mesoporphyrin to prevent neonatal hyperbilirubinemia, Journal of Perinatology, 36, 533( 2016).
  30. Unno, M., Matsui, T., Chu, G. C., Couture, M., Yoshida, T., Rousseau, D. L., Olson, J. S., and Ikeda-Saito, M. Crystal Structure of the Dioxygen-bound Heme Oxygenase from Corynebacterium diphtheriae: IMPLICATIONS FOR HEME OXYGENASE FUNCTION, Journal of Biological Chemistry, 279, 21055(2004).
  31. Hirotsu, S., Chu, G. C., Unno, M., Lee, D.-S., Yoshida, T., Park, S.-Y., Shiro, Y., and Ikeda-Saito, M. The Crystal Structures of the Ferric and Ferrous Forms of the Heme Complex of HmuO, a Heme Oxygenase of Corynebacterium diphtheriae, Journal of Biological Chemistry, 279, 11937(2004).
  32. Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. Crystal structure of human heme oxygenase-1, Nature Structural Biology, 6, 860(1999).
  33. Takahashi, S., Ishikawa, K., Takeuchi, N., Ikeda-Saito, M., Yoshida, T., and Rousseau, D. L. Oxygen-Bound Heme-Heme Oxygenase Complex: Evidence for a Highly Bent Structure of the Coordinated Oxygen, Journal of the American Chemical Society, 117, 6002(1995).
  34. O'Carra, P. Porphyrins and metalloporphyrins, KM Smith ed, 123(1975).
  35. Ratliff, M., Zhu, W., Deshmukh, R., Wilks, A., and Stojiljkovic, I. Homologues of Neisserial Heme Oxygenase in Gram-Negative Bacteria: Degradation of Heme by the Product of thepigA Gene of Pseudomonas aeruginosa, Journal of Bacteriology, 183, 6394(2001).
  36. Docherty, J. C., and Brown, S. B. Haem degradation in human haemoglobin in vitro. Separation of the contribution of the alpha- and beta-subunits, The Biochemical journal, 222, 401(1984).
  37. Lad, L., Wang, J., Li, H., Friedman, J., Bhaskar, B., Ortiz de Montellano, P. R., and Poulos, T. L. Crystal Structures of the Ferric, Ferrous, and Ferrous–NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1: Catalytic Implications, Journal of Molecular Biology, 330, 527(2003).
  38. Chu, G. C., Tomita, T., Sönnichsen, F. D., Yoshida, T., and Ikeda-Saito, M. The Heme Complex of Hmu O, a Bacterial Heme Degradation Enzyme from Corynebacterium diphtheriae : STRUCTURE OF THE CATALYTIC SITE, Journal of Biological Chemistry, 274, 24490 (1999).
  39. Zhou, H., Migita, C. T., Sato, M., Sun, D., Zhang, X., Ikeda-Saito, M., Fujii, H., and Yoshida, T. Participation of Carboxylate Amino Acid Side Chain in Regiospecific Oxidation of Heme by Heme Oxygenase, Journal of the American Chemical Society, 122, 8311(2000).
  40. Zeng, Y., Deshmukh, R., Caignan, G. A., Bunce, R. A., Rivera, M., and Wilks, A. Mixed Regioselectivity in the Arg-177 Mutants of Corynebacterium diphtheriae Heme Oxygenase as a Consequence of in-Plane Heme Disorder, Biochemistry, 43, 5222(2004).
  41. Brown, S. B., Chabot, A. A., Enderby, E. A., and North, A. C. T. Orientation of oxygen in oxyhaemoproteins and its implications for haem catabolism, Nature, 289, 93(1981).
  42. Smulevich, G., Mauro, J. M., Fishel, L. A., English, A. M., Kraut, J., and Spiro, T. G. Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy, Biochemistry, 27, 5477(1988).
  43. Colas, C., and Ortiz de Montellano, P. R. Autocatalytic Radical Reactions in Physiological Prosthetic Heme Modification, Chemical Reviews, 103, 2305(2003.
  44. Yoshida, T., Noguchi, M., and Kikuchi, G. Oxygenated form of heme. heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex, Journal of Biological Chemistry, 255, 4418(1980).
  45. Wilks, A., and Ortiz de Montellano, P. R. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species, Journal of Biological Chemistry, 268, 22357(1993).
  46. Liu, Y., Moënne-Loccoz, P., Loehr, T. M., and de Montellano, P. R. O. Heme Oxygenase-1, Intermediates in Verdoheme Formation and the Requirement for Reduction Equivalents, Journal of Biological Chemistry, 272, 6909(1997).
  47. Sano, S., Sano, T., Morishima, I., Shiro, Y., and Maeda, Y. On the mechanism of the chemical and enzymic oxygenations of alpha-oxyprotohemin IX to Fe.biliverdin IX alpha, Proceedings of the National Academy of Sciences, 83, 531(1986).
  48. Yoshinaga, T., Sudo, Y., and Sano, S. Enzymic conversion of α-oxyprotohaem IX into biliverdin IXα by haem oxygenase, Biochemical Journal, 270, 659( 1990).
  49. Yoshida, T., Noguchi, M., Kikuchi, G., and Sano, S. Degradation of mesoheme and hydroxymesoheme catalyzed by the heme oxygenase system: involvement of hydroxyheme in the sequence of heme catabolism, Journal of Biochemistry, 90, 125(1981).
  50. Matera, K. M., Takahashi, S., Fujii, H., Zhou, H., Ishikawa, K., Yoshimura, T., Rousseau, D. L., Yoshida, T., and Ikeda-Saito, M. Oxygen and One Reducing Equivalent Are Both Required for the Conversion of -Hydroxyhemin to Verdoheme in Heme Oxygenase, Journal of Biological Chemistry, 271, 6618( 1996).
  51. Hildebrand, D. P., Tang, H.-l., Luo, Y., Hunter, C. L., Smith, M., Brayer, G. D., and Mauk, A. G. Efficient Coupled Oxidation of Heme by an Active Site Variant of Horse Heart Myoglobin, Journal of the American Chemical Society, 118, 12909(1996).
  52. Morishima, I., Fujii, H., Shiro, Y., and Sano, S. Studies on the Iron(II) meso-Oxyporphyrin .pi.-Neutral Radical as a Reaction Intermediate in Heme Catabolism, Inorganic Chemistry, 34, 1528 ( 1995).
  53. Morishima, I., Fujii, H., Shiro, Y., and Sano, S. NMR studies of metalloporphyrin radicals. Iron(II) oxophlorin radical formed from iron(III) meso-hydroxyoctaethylporphyrin, Journal of the American Chemical Society, 108, 3858(1986).
  54. Masuoka, N., and Itano, H. A. Radical intermediates in the oxidation of octaethylheme to octaethylverdoheme, Biochemistry, 26, 3672(1987).
  55. Rath, S. P., Olmstead, M. M., and Balch, A. L. The Effects of Axial Ligands on Electron Distribution and Spin States in Iron Complexes of Octaethyloxophlorin, Intermediates in Heme Degradation, Journal of the American Chemical Society, 126, 6379(2004).
  56. Rath, S. P., Olmstead, M. M., and Balch, A. L. Electron Distribution in Iron Octaethyloxophlorin Complexes. Importance of the Fe(III) Oxophlorin Trianion Form in the Bis-pyridine and Bis-imidazole Complexes, Inorganic Chemistry, 45, 6083(2006).
  57. Balch, A. L., Koerner, R., Latos-Grażyński, L., Lewis, J. E., St. Claire, T. N., and Zovinka, E. P. Coupled Oxidation of Heme without Pyridine. Formation of Cyano Complexes of Iron Oxophlorin and 5-Oxaporphyrin (Verdoheme) from Octaethylheme, Inorganic Chemistry, 36, 3892 (1997).
  58. Balch, A. L., Latos-Grazynski, L., Noll, B. C., Szterenberg, L., and Zovinka, E. P. Chemistry of iron oxophlorins. 2. Oxidation of the iron(III) octaethyloxophlorin dimer and observation of stepwise, two-electron oxidation of the oxophlorin macrocycle, Journal of the American Chemical Society, 115, 11846 (1993).
  59. Hashimoto, S., Teraoka, J., Inubushi, T., Yonetani, T., and Kitagawa, T. Resonance Raman study on cytochrome c peroxidase and its intermediate. Presence of the Fe(IV) = O bond in compound ES and heme-linked ionization, Journal of Biological Chemistry, 261, 11110(1986).
  60. Takahashi, S., Wang, J., Rousseau, D. L., Ishikawa, K., Yoshida, T., Takeuchi, N., and Ikeda-Saito, M. Heme-Heme Oxygenase Complex: Structure and Properties of the Catalytic Site from Resonance Raman Scattering, Biochemistry, 33, 5531 (1994).
  61. Sharma, P. K., Kevorkiants, R., de Visser, S. P., Kumar, D., and Shaik, S. Porphyrin Traps Its Terminator! Concerted and Stepwise Porphyrin Degradation Mechanisms Induced by Heme-Oxygenase and Cytochrome P450, Angewandte Chemie International Edition, 43, 1129 (2004).
  62. Kumar, D., de Visser, S. P., and Shaik, S. Theory Favors a Stepwise Mechanism of Porphyrin Degradation by a Ferric Hydroperoxide Model of the Active Species of Heme Oxygenase, Journal of the American Chemical Society, 127, 8204 (2005).
  63. Chen, H., Moreau, Y., Derat, E., and Shaik, S. Quantum Mechanical/Molecular Mechanical Study of Mechanisms of Heme Degradation by the Enzyme Heme Oxygenase:  The Strategic Function of the Water Cluster, Journal of the American Chemical Society, 130, 1953 (2008).
  64. Kamachi, T., and Yoshizawa, K. Water-Assisted Oxo Mechanism for Heme Metabolism, Journal of the American Chemical Society, 127, 10686(2005).
  65. Kamachi, T., Nishimi, T., and Yoshizawa, K. A new understanding on how heme metabolism occurs in heme oxygenase: water-assisted oxo mechanism, Dalton Transactions, 41, 11642(2012).
  66. Gheidi, M., Safari, N., and Zahedi, M. Chameleonic Nature of Hydroxyheme in Heme Oxygenase and Its Reactivity: A Density Functional Theory Study, Inorganic Chemistry, 53, 2766(2014).
  67. Gheidi, M., Safari, N., and Zahedi, M. Effect of Axial Ligand on the Electronic Configuration, Spin States, and Reactivity of Iron Oxophlorin, Inorganic Chemistry, 51, 7094 (2012).
  68. Gheidi, M., Safari, N., and Zahedi, M. Structure and Redox Behavior of Iron Oxophlorin and Role of Electron Transfer in the Heme Degradation Process, Inorganic Chemistry, 51, 12857( 2012).
  69. Gheidi, M., Safari, N., and Zahedi, M. Density functional theory studies on the conversion of hydroxyheme to iron-verdoheme in the presence of dioxygen, Dalton Transactions, 46, 2146 (2017).
  70. Gheidi, M., Safari, N., Bahrami, H., and Zahedi, M. Theoretical investigations of the hydrolysis pathway of verdoheme to biliverdin, Journal of Inorganic Biochemistry, 101, 385(2007).
  71. Jamaat, P. R., Safari, N., Ghiasi, M., Naghavi, S. S.-a.-d., and Zahedi, M. Noninnocent effect of axial ligand on the heme degradation process: a theoretical approach to hydrolysis pathway of verdoheme to biliverdin, JBIC Journal of Biological Inorganic Chemistry, 13, 121(2008).
  72. Bahrami, H., Zahedi, M., and Safari, N. Theoretical investigations of the reactivity of verdoheme analogues: Opening of the planar macrocycle by amide, dimethyl amide, and hydroxide nucleophiles to form helical biliverdin type complexes, Journal of Inorganic Biochemistry, 100, 1449(2006).
  73. Gheidi, M., Safari, N., and Zahedi, M. Theoretical investigation of the ring opening process of verdoheme to biliverdin in the presence of dioxygen, Journal of Molecular Modeling, 16, 1401(2010).
  74. Shaik, S., de Visser, S. P., Ogliaro, F., Schwarz, H., and Schröder, D. Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory, Current Opinion in Chemical Biology, 6, 556 (2002).
  75. Shaik, S., Kumar, D., de Visser, S. P., Altun, A., and Thiel, W. Theoretical Perspective on the Structure and Mechanism of Cytochrome P450 Enzymes, Chemical Reviews, 105, 2279 (2005).
  76. Alavi, F. S., Zahedi, M., Safari, N., and Ryde, U. QM/MM Study of the Conversion of Oxophlorin into Verdoheme by Heme Oxygenase, The Journal of Physical Chemistry B, 121, 11427 (2017).
  77. Lai, W., Chen, H., Matsui, T., Omori, K., Unno, M., Ikeda-Saito, M., and Shaik, S. Enzymatic Ring-Opening Mechanism of Verdoheme by the Heme Oxygenase: A Combined X-ray Crystallography and QM/MM Study, Journal of the American Chemical Society, 132, 12960 (2010).
  78. Alavi, F. S., Gheidi, M., Zahedi, M., Safari, N., and Ryde, U. A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations, Dalton Transactions, 47, 8283-8291, 2018).79.  Alavi, F. S., Zahedi, M., Safari, N., and Ryde, U. QM/MM study of the conversion of biliverdin into verdoheme by heme oxygenase, Theoretical Chemistry Accounts138, 72 (2019).
  79. McCoubrey Jr, W. Isolation and Characterization of a cDNA from the Rat Brain that Encodes Hemoprotein Heme Oxygenase‐3, J. Biochem, 247, 725(1997).
  80. Hayashi, S., Omata, Y., Sakamoto, H., Higashimoto, Y., Hara, T., Sagara, Y., and Noguchi, M. Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene, Gene, 336, 241 (2004).
  81. Ewing, J. F., and Maines, M. D. Histochemical localization of heme oxygenase-2 protein and mRNA expression in rat brain, Brain Research Protocols, 1, 165 (1997).
  82. Peng, Y.-J., Makarenko, V. V., Nanduri, J., Vasavda, C., Raghuraman, G., Yuan, G., Gadalla, M. M., Kumar, G. K., Snyder, S. H., and Prabhakar, N. R. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema, Proceedings of the National Academy of Sciences, 111, 1174 (2014).
  83. Barañano, D. E., and Snyder, S. H. Neural roles for heme oxygenase: Contrasts to nitric oxide synthase, Proceedings of the National Academy of Sciences, 98, 10996( 2001).
  84. Zhang, H., Liu, Y.-y., Jiang, Q., Li, K.-r., Zhao, Y.-x., Cao, C., and Yao, J. Salvianolic acid A protects RPE cells against oxidative stress through activation of Nrf2/HO-1 signaling, Free Radical Biology and Medicine, 69, 219 (2014).
  85. Jomova, K., and Valko, M. Importance of iron chelation in free radical-induced oxidative stress and human disease, Current Phar maceutical Design, 17, 3460 (2011).
  86. Shen, Q., Jiang, M., Li, H., Che, L. L., and Yang, Z. M. Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity, Plant, Cell & Environment, 34, 752 (2011).
  87. Lee, I.-S., Lim, J., Gal, J., Kang, J. C., Kim, H. J., Kang, B. Y., and Choi, H. J. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells, Neurochemistry International, 58, 153 (2011).
  88. Sharp, F. R., Zhan, X., and Liu, D.-Z. Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential, Translational stroke research, 4, 685-692, 2013.
  89. Ryter, S. W., and Choi, A. M. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation, Translational Research, 167, 7(2016).
  90. Poss, K. D., and Tonegawa, S. Reduced stress defense in heme oxygenase 1-deficient cells, Proceedings of the National Academy of Sciences, 94, 10925 ( 1997).
  91. Mahawar, L., and Shekhawat, G. S. Haem oxygenase: a functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms, Plant, Cell & Environment, 41, 483 ( 2018).
  92. Fujita, Y., Tsujimoto, R., and Aoki, R. Evolutionary aspects and regulation of tetrapyrrole biosynthesis in cyanobacteria under aerobic and anaerobic environments, Life, 5, 1172(2015).
  93. Carvalho, R. F., Campos, M. L., and Azevedo, R. A. The role of phytochromes in stress tolerance, In Salt Stress in Plants Springer 283 (2013).
  94. Wilks, A., and Ikeda-Saito, M. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin, Accounts of Chemical Research, 47, 2291(2014).
  95. Yoshida, T., and Kikuchi, G. Purification and properties of heme oxygenase from rat liver microsomes, Journal of Biological Chemistry, 254, 4487(1979).
  96. Rotenberg, M. O., and Maines, M. D. Characterization of a cDNA-encoding rabbit brain heme oxygenase-2 and identification of a conserved domain among mammalian heme oxygenase isozymes: possible heme-binding site?, Archives of Biochemistry and Biophysics, 290, 336(1991).
  97. Maines, M. D., Trakshel, G. M., and Kutty, R. K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible, Journal of Biological Chemistry, 261, 411(1986).
  98. Ishikawa, K., Sato, M., Ito, M., and Yoshida, T. Importance of histidine residue 25 of rat heme oxygenase for its catalytic activity, Biochemical and Biophysical Research Communications, 182, 981(1992).
  99. Schuller, D. J., Zhu, W., Stojiljkovic, I., Wilks, A., and Poulos, T. L. Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1, Biochemistry, 40, 11552(2001).
  100. Friedman, J., Lad, L., Li, H., Wilks, A., and Poulos, T. L. Structural basis for novel δ-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa, Biochemistry, 43, 5239 (2004).
  101. Sugishima, M., Omata, Y., Kakuta, Y., Sakamoto, H., Noguchi, M., and Fukuyama, K. Crystal structure of rat heme oxygenase‐1 in complex with heme, FEBS Letters, 471, 61(2000).
  102. Lad, L., Schuller, D. J., Shimizu, H., Friedman, J., Li, H., de Montellano, P. R. O., and Poulos, T. L. Comparison of the heme-free and-bound crystal structures of human heme oxygenase-1, Journal of Biological Chemistry, 278, 7834(2003).
  103. Wilks, A., Black, S. M., Miller, W. L., and Ortiz de Montellano, P. R. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase, Biochemistry, 34, 4421(1995).
  104. Sun, J., Wilks, A., Ortiz de Montellano, P. R., and Loehr, T. M. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes, Biochemistry, 32, 14151(1993).
  105. Takahashi, S., Wang, J., Rousseau, D. L., Ishikawa, K., Yoshida, T., Host, J. R., and Ikeda-Saito, M. Heme-heme oxygenase complex. Structure of the catalytic site and its implication for oxygen activation, Journal of Biological Chemistry, 269, 1010(1994).
  106. Sun, J., Loehr, T. M., Wilks, A., and Ortiz de Montellano, P. R. Identification of histidine 25 as the heme ligand in human liver heme oxygenase, Biochemistry, 33, 13734(1994.
  107. Kitagawa, T. Biological applications of raman spectroscopy, Biological Applications of Raman Spectroscopy, 3, 97(1988).
  108. Kincaid, J., Stein, P., and Spiro, T. Absence of heme-localized strain in T state hemoglobin: insensitivity of heme-imidazole resonance Raman frequencies to quaternary structure, Proceedings of the National Academy of Sciences, 76, 549 (1979).
  109. Liu, Y., Lightning, L. K., Huang, H.-w., Moënne-Loccoz, P., Schuller, D. J., Poulos, T. L., Loehr, T. M., and De Montellano, P. R. O. Replacement of the distal glycine 139 transforms human heme oxygenase-1 into a peroxidase, Journal of Biological Chemistry, 275, 34501(2000).
  110. Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., de Montellano, P. R. O., and La Mar, G. N. Solution NMR characterization of an unusual distal H-bond network in the active site of the cyanide-inhibited, human heme oxygenase complex of the symmetric substrate, 2, 4-dimethyldeuterohemin, Journal of Biological Chemistry, 277, 33018 (2002).
  111. Li, Y., Syvitski, R. T., Auclair, K., Ortiz de Montellano, P., and La Mar, G. N. Solution 1H, 15N NMR spectroscopic characterization of substrate-bound, cyanide-inhibited human heme oxygenase: Water occupation of the distal cavity, Journal of the American Chemical Society, 125, 13392(2003).
  112. Lightning, L. K., Huang, H.-w., Moënne-Loccoz, P., Loehr, T. M., Schuller, D. J., Poulos, T. L., and De Montellano, P. R. O. Disruption of an active site hydrogen bond converts human heme oxygenase-1 into a peroxidase, Journal of Biological Chemistry, 276, 10612(2001).
  113. Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. The oxygen and carbon monoxide reactions of heme oxygenase, Journal of Biological Chemistry, 273, 945(1998).
  114. Noguchi, M., Yoshida, T., and Kikuchi, G. A stoichiometric study of heme degradation catalyzed by the reconstituted heme oxygenase system with special consideration of the production of hydrogen peroxide during the reaction, The Journal of Biochemistry, 93, 1027( 1983).
  115. Davydov, R., Chemerisov, S., Werst, D. E., Rajh, T., Matsui, T., Ikeda-Saito, M., and Hoffman, B. M. Proton transfer at helium temperatures during dioxygen activation by heme monooxygenases, Journal of the American Chemical Society, 126, 15960(2004).
  116. Davydov, R. M., Yoshida, T., Ikeda-Saito, M., and Hoffman, B. M. Hydroperoxy-heme oxygenase generated by cryoreduction catalyzes the formation of α-meso-hydroxyheme as detected by EPR and ENDOR, Journal of the American Chemical Society, 121, 10656(1999).
  117. Davydov, R., Kofman, V., Fujii, H., Yoshida, T., Ikeda-Saito, M., and Hoffman, B. M. Catalytic mechanism of heme oxygenase through EPR and ENDOR of cryoreduced oxy-heme oxygenase and its Asp 140 mutants, Journal of the American Chemical Society, 124, 1798(2002).
  118. Garcia-Serres, R., Davydov, R. M., Matsui, T., Ikeda-Saito, M., Hoffman, B. M., and Huynh, B. H. Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mössbauer spectroscopy, Journal of the American Chemical Society, 129, 1402(2007).
  119. Ishikawa, K., Takeuchi, N., Takahashi, S., Matera, K. M., Sato, M., Shibahara, S., Rousseau, D. L., Ikeda-Saito, M., and Yoshida, T. Heme oxygenase-2 properties of the heme complex of the purified tryptic fragment of recombinant human heme oxygenase-2, Journal of Biological Chemistry, 270, 6345(1995).
  120. Wilks, A., Torpey, J., and de Montellano, P. O. Heme oxygenase (HO-1). Evidence for electrophilic oxygen addition to the porphyrin ring in the formation of alpha-meso-hydroxyheme, Journal of Biological Chemistry, 269, 29553(1994).
  121. Noguchi, M., Yoshida, T., and Kikuchi, G. Identification of the Product of Heme Degradation Catalyzed by the Heme Oxygenase System as Biliverdin IXα by Reversed-Phase High-Performance Liquid Chromatography, The Journal of Biochemistry, 91, 1479(1982).
  122. Blumenthal, S. G., Taggart, D. B., Ikeda, R., Ruebner, B., and Bergstrom, D. Conjugated and unconjugated bilirubins in bile of humans and rhesus monkeys. Structure of adult human and rhesus-monkey bilirubins compared with dog bilirubins, Biochemical Journal, 167, 535(1977).
  123. Lemberg, R. The chemical mechanism of bile pigment formation, Rev. pure appl. Chem, 6, 23(1956).
  124. Bonnett, R., and McDonagh, A. F. The meso-reactivity of porphyrins and related compounds. Part VI. Oxidative cleavage of the haem system. The four isomeric biliverdins of the IX series, Journal of the Chemical Society, Perkin Transactions 1, 881(1973).
  125. Colleran, E. HAEM catabolism and coupled oxidation of haemproteins, FEBS Letters, 5, 295(1969).
  126. Docherty, J. C., Masters, B. S. S., Firneisz, G. D., and Schacter, B. A. Heme oxygenase provides α-selectivity to physiological heme degradation, Biochemical and Biophysical Research Communications, 105, 1005(1982).
  127. Torpey, J., and de Montellano, P. R. O. Oxidation of the meso-Methylmesoheme Regioisomers by Heme Oxygenase ELECTRONIC CONTROL OF THE REACTION REGIOSPECIFICITY, Journal of Biological Chemistry, 271, 26067(1996).
  128. Torpey, J., and de Montellano, P. R. O. Oxidation of α-meso-Formylmesoheme by Heme Oxygenase ELECTRONIC CONTROL OF THE REACTION REGIOSPECIFICITY, Journal of Biological Chemistry, 272, 22008 ( 1997).
  129. Senge, M. O., Ema, T., and Smith, K. M. Crystal structure of a remarkably ruffled nonplanar porphyrin (pyridine)[5, 10, 15, 20-tetra (tert-butyl) porphyrinato] zinc (II), Journal of the Chemical Society, Chemical Communications, 733(1995).
  130. Ortiz de Montellano, P. R., and Wilks, A. Heme oxygenase structure and mechanism, In Advances in Inorganic Chemistry, pp 359 (2000) .
  131. Torpey, J., Lee, D. A., Smith, K. M., and Ortiz de Montellano, P. R. Oxidation of an α-meso-methyl-substituted heme to an α-biliverdin by heme oxygenase. A novel heme cleavage reaction, Journal of the American Chemical Society, 118, 9172(1996).
  132. Ortiz de Montellano, P. R. Heme oxygenase mechanism: evidence for an electrophilic, ferric peroxide species, Accounts of Chemical Research, 31, 543 (1998).
  133. Hydroxylation, H., DAVYDOV, R., MATSUI, T., FUJII, H., IKEDA-SAITO, M., and HOFFMAN, B. M. VC Bioinorganic Chemistry and Structural Biology of Heme Proteins, J. Am. Chem. Soc, 125, 16208 (2003).
  134. Matsui, T., Kim, S. H., Jin, H., Hoffman, B. M., and Ikeda-Saito, M. Compound I of heme oxygenase cannot hydroxylate its heme meso-carbon, Journal of the American Chemical Society, 128, 1090 (2006).
  135. Garcia-Bosch, I., Sharma, S. K., and Karlin, K. D. A Selective Stepwise Heme Oxygenase Model System: An Iron(IV)-Oxo Porphyrin π-Cation Radical Leads to a Verdoheme-Type Compound via an Isoporphyrin Intermediate, Journal of the American Chemical Society, 135, 16248 (2013).
  136. Sakamoto, H., Omata, Y., Palmer, G., and Noguchi, M. Ferric α-hydroxyheme bound to heme oxygenase can be converted to verdoheme by dioxygen in the absence of added reducing equivalents, Journal of Biological Chemistry, 274, 18196 (1999).
  137. Ikeda-Saito, M., Hori, H., Andersson, L., Prince, R., Pickering, I., George, G., Sanders, C. n., Lutz, R., McKelvey, E., and Mattera, R. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants, Journal of Biological Chemistry, 267, 22843 (1992).
  138. Bogumil, R., Maurus, R., Hildebrand, D. P., Brayer, G. D., and Mauk, A. G. Origin of the pH-dependent spectroscopic properties of pentacoordinate metmyoglobin variants, Biochemistry, 34, 10483 (1995).
  139. Balch, A. L., Noll, B. C., Reid, S. M., and Zovinka, E. P. Coordination patterns for oxophlorin ligands. Pyridine-induced cleavage of dimeric manganese (III) and iron (III) octaethyloxophlorin complexes, Inorganic Chemistry, 32, 2610 (1993).
  140. Balch, A. L., Koerner, R., Latos-Grażyński, L., and Noll, B. C. A role for electron transfer in heme catabolism? Structure and redox behavior of an intermediate,(pyridine) 2Fe (octaethyloxophlorin), Journal of the American Chemical Society, 118, 2760 (1996).
  141. Migita, C. T., Fujii, H., Mansfield Matera, K., Takahashi, S., Zhou, H., and Yoshida, T. Molecular oxygen oxidizes the porphyrin ring of the ferric alpha-hydroxyheme in heme oxygenase in the absence of reducing equivalent, Biochimica et Biophysica Acta, 1432, 203 (1999).
  142. Yoshida, T., and Migita, C. T. Mechanism of heme degradation by heme oxygenase, Journal of Inorganic Biochemistry, 82, 33 (2000).
  143. Carter, E. A., and Goddard III, W. A. Relationships between bond energies in coordinatively unsaturated and coordinatively saturated transition-metal complexes: a quantitative guide for single, double, and triple bonds, The Journal of Physical Chemistry, 92, 5679 (1988).
  144. Zhang, X., Fujii, H., Matera, K. M., Migita, C. T., Sun, D., Sato, M., Ikeda-Saito, M., and Yoshida, T. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin, Biochemistry, 42, 7418 (2003).
  145. Liu, Y., and de Montellano, P. R. O. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1, Journal of Biological Chemistry, 275, 5297 ( 2000).
  146. YOSHIDA, T., and NOGUCHI, M. Features of intermediary steps around the 688-nm substance in the heme oxygenase reaction, The Journal of Biochemistry, 96, 563 (1984).
  147. Yoshida, T., and Kikuchi, G. Features of the reaction of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system, Journal of Biological Chemistry, 253, 4230 ( 1978).
  148. Matsui, T., Nakajima, A., Fujii, H., Matera, K. M., Migita, C. T., Yoshida, T., and Ikeda-Saito, M. O2-and H2O2-dependent Verdoheme Degradation by Heme Oxygenase REACTION MECHANISMS AND POTENTIAL PHYSIOLOGICAL ROLES OF THE DUAL PATHWAY DEGRADATION, Journal of Biological Chemistry, 280, 36833 (2005).
  149. Saito, S., and Itano, H. A. Verdohemochrome IX alpha: preparation and oxidoreductive cleavage to biliverdin IX alpha, Proceedings of the National Academy of Sciences, 79, 1393 (1982).
  150. Nguyen, K. T., Rath, S. P., Latos-Grażyński, L., Olmstead, M. M., and Balch, A. L. Formation of a highly oxidized iron biliverdin complex upon treatment of a five-coordinate verdoheme with dioxygen, Journal of the American Chemical Society, 126, 6210 (2004).
  151. Koerner, R., Latos-Grażyński, L., and Balch, A. L. Models for verdoheme hydrolysis. Paramagnetic products from the ring opening of verdohemes, 5-oxaporphyrin complexes of Iron (II), with methoxide ion, Journal of the American Chemical Society, 120, 9246 (1998)..
  152. Latos-Grażyński, L., Johnson, J., Attar, S., Olmstead, M. M., and Balch, A. L. Reactivity of the verdoheme analogues, 5-oxaporphyrin complexes of cobalt (II) and zinc (II), with nucleophiles: Opening of the planar macrocycle by alkoxide addition to form helical complexes, Inorganic Chemistry, 37, 4493 (1998).
  153. Johnson, J. A., Olmstead, M. M., and Balch, A. L. Reactivity of the verdoheme analogues. Opening of the planar macrocycle by amide and thiolate nucleophiles to form helical complexes, Inorganic Chemistry, 38, 5379 (1999).
  154. Johnson, J. A., Olmstead, M. M., Stolzenberg, A. M., and Balch, A. L. Ring-opening and meso substitution from the reaction of cyanide ion with zinc verdohemes, Inorganic Chemistry, 40, 5585 (2001).
  155. Docherty, J. C., Schacter, B. A., Firneisz, G. D., and Brown, S. Mechanism of action of heme oxygenase. A study of heme degradation to bile pigment by 18O labeling, Journal of Biological Chemistry, 259, 13066 (1984).
  156. Matsui, T., Omori, K., Jin, H., and Ikeda-Saito, M. Alkyl peroxides reveal the ring opening mechanism of verdoheme catalyzed by heme oxygenase, Journal of the American Chemical Society, 130, 4220 (2008).
  157. Lad, L., Friedman, J., Li, H., Bhaskar, B., Ortiz de Montellano, P. R., and Poulos, T. L. Crystal structure of human heme oxygenase-1 in a complex with biliverdin, Biochemistry, 43, 3793 ( 2004).
  158. Lad, L., de Montellano, P. R. O., and Poulos, T. L. Crystal structures of ferrous and ferrous–NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage, Journal of Inorganic Biochemistry, 98, 1686 (2004).
  159. Balch, A. L., Latos-Grazynski, L., Noll, B. C., Olmstead, M. M., and Safari, N. Isolation and characterization of an iron biliverdin-type complex that is formed along with verdohemochrome during the coupled oxidation of iron (II) octaethylporphyrin, Journal of the American Chemical Society, 115, 9056 (1993).
  160. Loboda, A., Jozkowicz, A., and Dulak, J. HO-1/CO system in tumor growth, angiogenesis and metabolism—Targeting HO-1 as an anti-tumor therapy, Vascular pharmacology, 74, 11 (2015).
  161. Salerno, L., Floresta, G., Ciaffaglione, V., Gentile, D., Margani, F., Turnaturi, R., Rescifina, A., and Pittalà, V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application, European journal of medicinal chemistry, (2019).
  162. Davari, M. D., Bahrami, H., Zahedi, M., and Safari, N. Theoretical investigations on the hydrolysis pathway of tin verdoheme complexes: elucidation of tin’s ring opening inhibition role, Journal of Molecular Modeling, 15, 1299 (2009).
  163. Davari, M. D., Bahrami, H., Zahedi, M., and Safari, N. Effect of the axial ligands on the structure and reactivity of tin verdoheme in the ring opening process, Inorganica Chimica Acta, 363, 1577 (2010).