ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper


Department of Chemistry, faculty of Pharmaceutical chemistry, Tehran Medical sciences, Islamic Azad University, Tehran, Iran


Methylene blue (MB) is an organic dye that is widely used in various industries and have different adverse effects on the environment. Therefore, its removal is of great importance. In this respect, the performance of a recently synthesized schiff base network1 (SNW1) as an adsorbent for the removal of MB was scrutinized by DFT computations. For this purpose, the structures of MB, SNW1 and their complexes were optimized geometrically and the underwent infra-red (IR) calculations. All of the computations were done by density functional theory approach in the B3LYP/6-31G (d) level of theory. The obtained negative adsorption energies showed MB interaction with SNW1 is experimentally possible. The achieved negative values of Gibbs free energy changes and adsorption enthalpy changes revealed the MB adsorption process is exothermic and spontaneous. The positive values of entropy alterations and thermodynamic equilibrium constants demonstrated that the adsorption process of MB is thermodynamically possible and the chaos is increased in their interaction process. 


Main Subjects

  1. Feng, X. Ding, D. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41(18), (2012) 6010-6022. DOI:10.1039/C2CS35157A.
  2. -Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev. 42(2), (2013) 548-568. DOI:10.1039/C2CS35072F.
  3. J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks, Acc. Chem. Res. 48(12), (2015) 3053-3063. DOI:10.1021/acs.accounts.5b00369.
  4. [31] L. Zhu, Y.-B. Zhang, Crystallization of covalent organic frameworks for gas storage applications, Molecules. 22(7), (2017) 1149. DOI:10.3390/molecules22071149.
  5. -L. Qian, C.-X. Yang, W.-L. Wang, C. Yang, X.-P. Yan, Advances in covalent organic frameworks in separation science, J. Chromatogr. A. 1542, (2018) 1-18. DOI:10.1016/j.chroma.2018.02.023.
  6. B. Shinde, G. Sheng, X. Li, M. Ostwal, A.-H. Emwas, K.-W. Huang, Z. Lai, Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration, J. Am. Chem. Soc. 140(43), (2018) 14342-14349. DOI:10.1021/jacs.8b08788.
  7. Sun, B. Aguila, J. Perman, L.D. Earl, C.W. Abney, Y. Cheng, H. Wei, N. Nguyen, L. Wojtas, S. Ma, Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal, J. Am. Chem. Soc. 139(7), (2017) 2786-2793. DOI:10.1021/jacs.6b12885.
  8. Xue, H. Guo, T. Wang, L. Gong, Y. Wang, J. Ai, D. Huang, H. Chen, W. Yang, Fluorescence properties and analytical applications of covalent organic frameworks, Anal. Methods. 9(25), (2017) 3737-3750. DOI:10.1039/C7AY01261F.
  9. Khayum M, V. Vijayakumar, S. Karak, S. Kandambeth, M. Bhadra, K. Suresh, N. Acharambath, S. Kurungot, R. Banerjee, Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes, ACS Appl. Mater. Interfaces. 10(33), (2018) 28139-28146. DOI:10.1021/acsami.8b10486.
  10. G. Schwab, B. Fassbender, H.W. Spiess, A. Thomas, X. Feng, K. Mullen, Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry, J. Am. Chem. Soc. 131(21), (2009) 7216-7217. DOI:10.1021/ja902116f.
  11. R. Jalal, T. Madrakian, A. Afkhami, M. Ghamsari, Polyethylenimine@ Fe3O4@ carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples, J. Electroanal. Chem. 833, (2019) 281-289. DOI:10.1016/j.jelechem.2018.12.004.
  12. Nanotube Modeler J. Crystal. Soft., 2014 software.
  13. GaussView, Version 6.1, Dennington R., Keith T.A., Millam J.M., Semichem Inc., Shawnee Mission, KS, 2016.
  14. Gaussian 16, Revision 01, Frisch M. J., Trucks G. W., Sch