ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

Department of Chemistry, faculty of Pharmaceutical chemistry, Tehran Medical sciences, Islamic Azad University, Tehran, Iran

Abstract

The removal and detection of nalidixic acid (NA) as an emerging environmental contaminant and a medicine are of great importance. In this respect, the performance of fullerene (C20) as a sensing material and an adsorbent for NA was investigated by infrared-red (IR), frontier molecular orbital (FMO), and natural bond orbital (NBO) computations. The calculated adsorption energies, Gibbs free energy changes, enthalpy changes, and thermodynamic constants showed that NA interaction with C20 was experimentally feasible, exothermic, and spontaneous. The NBO results indicated that NA interaction with C20 was physisorption and no bond was created among the adsorbent and adsorbate. Moreover, findings on the effect of the temperature indicated that the adsorption process was more favorable at lower temperatures. The computed bandgap values showed that when NA was adsorbed on the surface of C20, the bandgap of fullerene experienced a sharp increase (+298.462%) from 1.950 to 7.770 (eV). Hence, this nanostructure is a suitable sensing material for the development of novel electrochemical sensors for the determination of NA.  

Keywords

Main Subjects

  1. Leyva-Díaz J.C, Batlles-delaFuente A., Molina-Moreno V., Sánchez Molina J., Belmonte-Ureña, L. J. Removal of pharmaceuticals from wastewater: Analysis of the past and present global research activities. Water. 2021;13(17): 2353.
  2. Tahrani L., Soufi L., Mehri I., Najjari A., Hassan A., Van Loco J., Mansour H. B. Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Microb. Pathog., 2015; 89: 54-61.
  3. Wu Q., Li Z., Hong H. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Appl. Clay. Sci., 2013;74: 66-73.
  4. de la Torre P. M., Enobakhare Y., Torrado G., Torrado S. Release of amoxicillin from polyionic complexes of chitosan and poly (acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials. 2003; 24(8): 1499-1506.
  5. Lin A. Y. C., Yu T. H., Lin C. F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere. 2008; 74(1): 131-141.
  6. Tamtam F., Van Oort F., Le Bot B., Dinh T., Mompelat S., Chevreuil M., Thiry M. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci. Total. Environ., 2011; 409(3): 540-547.
  7. Watkinson A. J., Murby E. J., Kolpin D. W., Costanzo S. D. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci. Total. Environ. 2009;407(8), 2711-2723.
  8. Morrissey R. E., Eustis S., Haseman J. K., Huff J., Bucher J. R. Toxicity and carcinogenicity studies of nalidixic acid in rodents. Drug. Chem. Toxicol. 1991; 14(1-2): 45-66.
  9. Pollice A., Laera G., Cassano D., Diomede S., Pinto A., Lopez A., Mascolo G. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system. J. Hazard. Mater., 2012;203: 46-52.
  10. Choi K. J., Kim S. G., Kim S. H. Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon. Environ. Technol. 2008;29(3): 333-342.
  11. Robberson K. A., Waghe A. B., Sabatini D. A., Butler E. C. Adsorption of the quinolone antibiotic nalidixic acid onto anion-exchange and neutral polymers. Chemosphere. 2006; 63(6): 934-941.
  12. Kim I., Yamashita N., Tanaka H. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J. Hazard. Mater. 2009;166(2-3): 1134-1140.
  13. Roohi G., Mahmoodi G., Khoddam H. Knowledge implementation in health care management: a qualitative study. BMC Health. Serv. Res. 2020; 20(1): 1-9.
  14. Beheshtian J., Peyghan A. A., Bagheri Z. Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens. Actuators B Chem. 2012; 171: 846-852.
  15. Hussain S., Hussain R., Mehboob M. Y., Chatha S. A. S., Hussain A. I., Umar A., Ayub K. Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS omega. 2020; 5(13): 7641-7650.