ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

1 Young Researchers and Elite Club, Tehran Medical sciences, Islamic Azad university, Tehran, Iran

2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

3 Research Center for New Technologies in Chemistry and Related Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

Abstract

The removal and detection of nalidixic acid (NA) as an emerging environmental contaminant and a medicine are of great importance. In this respect, the performance of fullerene (C20) as a sensing material and an adsorbent for NA was investigated by infrared-red (IR), frontier molecular orbital (FMO), and natural bond orbital (NBO) computations. The calculated adsorption energies, Gibbs free energy changes, enthalpy changes, and thermodynamic constants showed that NA interaction with C20 was experimentally feasible, exothermic, and spontaneous. The NBO results indicated that NA interaction with C20 was physisorption and no bond was created among the adsorbent and adsorbate. Moreover, findings on the effect of the temperature indicated that the adsorption process was more favorable at lower temperatures. The computed bandgap values showed that when NA was adsorbed on the surface of C20, the bandgap of fullerene experienced a sharp increase (+298.462%) from 1.950 to 7.770 (eV). Hence, this nanostructure is a suitable sensing material for the development of novel electrochemical sensors for the determination of NA.

Keywords

Main Subjects

[1] L. Tahrani, L. Soufi, I. Mehri, A. Najjari, A. Hassan, J. Van Loco, H.B. Mansour, Microb. Pathog., 89, 54-61 (2015).
[2] Q. Wu, Z. Li, H. Hong, Appl. Clay. Sci., 74, 66-73 (2013).
[3] P.M. Torre, Y. Enobakhare, G. Torrado, S. Torrado, Biomaterials, 24(8), 1499-1506 (2003).
[4] A.Y.C. Lin, T.H. Yu, C.F. Lin, Chemosphere., 74(1),131-141 (2008).
[5] F. Tamtam, F. Van Oort, B. Le Bot, T. Dinh, S. Mompelat, M. Chevreuil, M. Thiry, Sci.Total. Environ., 409(3), 540-547 (2011).
[6] A.J. Watkinson, E.J. Murby, D.W. Kolpin, S.D. Costanzo, Sci. Total. Environ., 407(8), 2711-2723 (2009).
[7] R.E. Morrissey, S. Eustis, J.K. Haseman, J. Huff, J.R. Bucher, Drug.Chem.Toxicol., 14(1-2), 45-66 (1991).
[8] A. Pollice, G. Laera, D. Cassano, S. Diomede, A. Pinto, A. Lopez, G. Mascolo, J.Hazard. Mater., 203, 46-52 (2012).
[9] K.J. Choi, S.G. Kim, S.H. Kim, Environ.Technol. 29(3), 333-342 (2008).
[10] K.A. Robberson, A.B. Waghe, D.A. Sabatini, E.C. Butler, Chemosphere., 63(6), 934-941 (2006).
[11] I. Kim, N. Yamashita, H. Tanaka, J. Hazard. Mater., 166(2-3), 1134-1140 (2009).
[12] G. Roohi, G. Mahmoodi, H. Khoddam, BMC Health. Serv. Res., 20(1), 1-9 (2020).
[13] J. Beheshtian, A.A. Peyghan, Z. Bagheri, Sens. Actuators B Chem., 171, 846-852 (2012).
[14] S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, K. Ayub, ACS omega., 5(13), 7641-7650 (2020).
[15] S. Majedi, H.G. Rauf, M. Boustanbakhsh, Chem. Rev. Lett., 2(4), 176-186 (2019).
[16] R. Moladoust, Chem. Rev. Lett. 2(4), 151-156 (2019).
[17] Nanotube Modeler J. Crystal. Soft., 2014 software.
[18] R. Dennington, T.A. Keith, J.M. Millam, Semichem Inc., Shawnee Mission, KS, GaussView, Version 6.1, 2016.
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 16, Revision C.01 (2016).
[20] N.M. O'boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem., 29(5), 839-845 (2008).
[21] M.R. Jalali Sarvestani, R. Ahmadi, J. Phys. Theor. Chem., 15(1 (Spring and Summer 2018) 1 and 2): 15-25 (2018).
[22] R. Ahmadi, M.R.  Jalali Sarvestani, J. Phys. Chem. B., 14, 198-208 (2020).
[23] M.J. Jalali Sarvestani, R. Ahmadi, Asian J. Nanosci. Mater., 3, 103-114 (2020).
[24] M.R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb, Int. J. New. Chem., 7(2), 87-100 (2020).
[25] M.R. Jalali Sarvestani, R. Ahmadi, Int. J. New. Chem., 4(4), 101-110 (2017).
[26] M.J. Jalali Sarvestani, R. Ahmadi, Chem. Methodol., 4, 40-54 (2020).
[27] S. Majedi, F. Behmagham, M. Vakili, J. Chem. Lett., 1(1), 19-24 (2020).
[28] H. Ghafur Rauf, S. Majedi, E. Abdulkareem Mahmood, M. Sofi, Chem. Rev. Lett., 2(3), 140-150 (2019).
[29] R.A. Mohammed, U. Adamu, U. Sani, S.A. Gideon, A. Yakub, Chem. Rev. Lett., 2(3),107-117 (2019).
[30] S. Majedi, H.G. Rauf, M. Boustanbakhsh, Chem. Rev. Lett., 2(4), 176-186 (2019).
[31] L. Hajiaghababaei, A.S. Shahvelayati, S.A. Aghili, Anal. Bioanal. Electrochem., 7, 91-104 (2015).
[32] S.S. Uroomiye, Int. J. New. Chem., 6(3), 156-162 (2019).
[33] A.S. Shahvelayati, I. Yavari, A.S. Delbari, Chin. Chem. Lett., 25(1), 119-122 (2014).
[34] M. R. Jalali Sarvestani, R. Ahmadi, Journal of Physical & Theoretical Chemistry, 15, 15-25 (2018).