ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper


1 House 6, Royal Estate, Abacha Road

2 Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria

3 Department of Chemistry, Federal University of Lafia, P.M.B. 146, Lafia, Nasarawa State, Nigeria.


The expanding use of cassava and its derivatives across industries in Nigeria has raised concerns about potential hydrogen cyanide (HCN) toxicity in inadequately processed cassava products. This study aimed to investigate and compare the hydrogen cyanide concentration in eight processed cassava product samples sourced from January to March 2023 from supermarkets and local markets in Lafia town, Nigeria, using the picrate in solution method. The samples included Niji® Foods Cassava Flour, IFGREEN® Odourless Fufu Flour, Ayoola® Fufu Flour, Aiteefills® Fufu flour, Niji® Foods Garri, Golden Penny Garri, GGEE® foods Ijebu Garri, and local brand cassava starch. Spectrophotometric measurements at 535 nm were used to determine the total cyanide content in mg HCN equivalents/kg dry weight, calculated as ppm by multiplying the absorbance by 396. The results were analysed using Minitab version 20.0, employing one-way ANOVA, and pair-wise comparisons were made post hoc using Tukey t-tests. HCN concentrations in all samples ranged from 4.13 to 21.47 mg HCN equivalents/kg dry weight, exhibiting significant variation (p ≤ 0.05) among the samples. Except for Niji® Foods Garri and Ayoola® Fufu Flour, all samples surpassed the benchmark limit set by FAO/WHO and SON (10 mg HCN/kg body weight). However, all samples were deemed safe for consumption as the hydrogen cyanide concentration did not exceed the lethal dose threshold (50 - 100 mg HCN/kg body weight). This study provides valuable insights into the hydrogen cyanide content of various processed cassava products and confirms their safety for consumption when adequately processed.


Main Subjects

  1. Nyamekye C. A., Health issues related to the production and consumption of cassava as a staple food (Master's thesis, Norwegian University of Life Sciences, As) (2021).
  2. Saggafu S. M., Saha, H. M., and Mwololo, J. In Coastal Kenya. GSJ7(7) (2019).
  3. Musah S., Kwakye E., Kudaddze S. and Adzawla W., Analyzing cassava processors’preferred output and profitability of cassava processing in Hohoe municipality. UDS International Journal of Development7(1), 262-272 (2020).
  4. Adjei L. P., Arthur E. K., Gikunoo E., Foli G., Quaye-Ballard J. A., Agyemang F. O. and Baah D. S., Cyanide contamination assessment via target survey and physicochemical and bacteriological characterization: a case study of Akrofrom-Techiman cassava processing area in Ghana. Environmental Monitoring and Assessment195(4), 482 (2023).
  5. FAOSTAT [Internet]. [cited 24 February 2020]. Available from: (2020).
  6. Vaishnav A., Kumar R., Singh H. B., and Sarma B. K., Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. Science of the Total Environment826, 154170 (2022).
  7. Isabirye Z. The distribution and abundance of bondar’s nesting whitefly (paraleyrodes bondari) on cassava in busukuma sub-county, wakiso district, uganda (Doctoral dissertation, Makerere University) (2021).
  8. Ogunyinka O., and Oguntuase A., Analysis of cassava production and processing by various groups in support of cassava value chain in the south west of Nigeria. ISABB Journal of Food and Agricultural Sciences9(1), 11-19 (2020).
  9. Jackson J., Chiwona-Karltun L., and Gordon A., Food safety and quality considerations for cassava, a major staple containing a natural toxicant. In Food safety and quality systems in developing countries (pp. 343-366), Academic Press (2020).
  10. Owolabi I. O., Kolawole O., Jantarabut P., Elliott C. T., and Petchkongkaew A., The importance and mitigation of mycotoxins and plant toxins in Southeast Asian fermented foods. npj Science of Food6(1), 39 (2022).
  11. Gundersen E., Christiansen A. H. C., Jørgensen K., and Lübeck M., Production of leaf protein concentrates from cassava: Protein distribution and anti-nutritional factors in biorefining fractions. Journal of Cleaner Production379, 134730 (2022).
  12. Quinn A. A., Myrans H., and Gleadow R. M., Cyanide content of cassava food products available in Australia. Foods11(10), 1384 (2022).
  13. Ndam Y. N., Mounjouenpou P., Kansci G., Kenfack M. J., Meguia M. P. F., Eyenga N. S. N. N., ... and Nyegue A., Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Scientific African5, e00119 (2019).
  14. Elkhazraji A., Adil M., Mhanna M., Abualsaud N., Alsulami A. A., Shakfa M. K., ... and Farooq A., A mid-IR laser diagnostic for HCN detection. Proceedings of the Combustion Institute39(1), 1485-1493 (2023).
  15. Kabir E., Raza N., Kumar V., Singh J., Tsang Y. F., Lim D. K., ... and Kim K. H., Recent advances in nanomaterial-based human breath analytical technology for clinical diagnosis and the way forward. Chem5(12), 3020-3057 (2019).
  16. Demographic Statistics Bulletin. National Bureau of Statistics (2020).
  17. Ezekiel A., Dahiru M. K. and Abdullahi S. B., Households Perception on the Generation and Disposal of Solid Waste in Lafia Metropolis of Nasarawa State (2021).
  18. Orjiekwe C., Solola A. and Iyen E., Determination of cyanogenic glucosides in cassava products sold in Okada, Edo State, Nigeria. Afr J Food Sci 7: 468–472 (2013).
  19. Kareem B., Irondi E. A., Alamu E. O., Ajani E. O., Abass A., Adesokan M., ... and Maziya-Dixon B., Influence of traditional processing and genotypes on the antioxidant and antihyperglycaemic activities of yellow-fleshed cassava. Frontiers in Nutrition9, 894843 (2022).
  20. Chisenga S. M., Workneh T. S., Bultosa G., and Laing M. Proximate composition, cyanide contents, and particle size distribution of cassava flour from cassava varieties in Zambia. AIMS Agriculture & Food4(4) (2019).
  21. Kasankala L. M., Kitunda M. E., Towo E. E., Ngwasy G. M., Kaitira L., Cyprian C., and Mushumbusi D., Antinutritional factors reduction from cassava (Manihot esculenta crantz) roots by grating or chipping processing technique in Mtwara Tanzania. European Journal of Nutrition & Food Safety9(2), 163-171 (2019).
  22. Okoth R. Assessment of the Effect of Microbial Fermentation on Antinutrients and Protein Quality of Selected Cassava Leaf varieties. In Egerton University International Conference (2022, March).
  23. Burns A. E., Bradbury J. H., Cavagnaro T. R. and Gleadow R. M., Total cyanide content of cassava food products in Australia. J. Food Compos. Anal., 25, 79–82 (2012).
  24. Bandna C., Effect of processing on the cyanide content of cassava products in Fiji. J. Microbiol. Biotechnol. Food Sci., 2, 947–958 (2021).
  25. Alhassan H., Determination of cyanogenic glycosides in roots of cassava plant and some cassava products (2017).
  26. Adindu M. N., Olayemi F. F. and Nze-Dike O. U., Cyanogenic potential of some cassava products in Port Harcourt markets in Nigeria. Journal of Food Composition and Analysis16(1), 21-24 (2003).
  27. Ibegbulem C. O. and Chikezie P. C., Comparative proximate composition and cyanide content of peeled and unpeeled cassava roots processed into garri by traditional methods. Research Journal of Food and Nutrition, 2(2), 1-13 (2018).
  28. Olorunfemi D. I. and Afobhokhan C. O., Effect of selected vegetable oils on the cyanide content of cassava. Manihot esculenta, 259-67 (2012).
  29. Aniebo A. O., Appraisal of palm oil and methionine as detoxifying agents of residual cyanide in cassava-based broiler starter diets. International Journal of Food, Agriculture and Veterinary Science2(1), 153-161 (2012).
  30. Akande S. A., Onyegbula A. F., Salawu R. A., Oladipo A. K. and Adetunji C. O., Effects of post-harvest handling on hydrogen cyanide content of cassava products obtained from Ilorin-West urban markets, Nigeria. African Journal of Food Science11(11), 362-368 (2017).
  31. Ndam Y. N., Mounjouenpou P., Kansci G., Kenfack M. J., Meguia M. P. F., Eyenga N. S. N. N. and Nyegue A., Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Scientific African Journal, 5, e00119 (2019).
  32. Iwuoha G. N., Ubeng G. G., and Onwuachu U. I., Detoxification effect of fermentation on cyanide content of cassava tuber. Journal of applied sciences and environmental management17(4), 567-570 (2013).
  33. Agbor-Egbe T., and Lape Mbome I. The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis, 19(4), 354-363. (2006).
  34. Panghal A., Munezero C., Sharma P., and Chhikara N., Cassava toxicity, detoxification and its food applications: a review. Toxin Reviews (2019).
  35. Kuliahsari D. E., Sari I. N. I. and Estiasih T., Cyanide detoxification methods in food: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 733, No. 1, p. 012099). IOP Publishing (2021, April).
  36. WHO. World Health Organization. Online: (2023).
  37. McAllister J., Kunsman G. W. and Levine B. S., Carbon monoxide/cyanide. Principles of Forensic Toxicology, 545-560 (2020).
  38. Hendry-Hofer T. B., Ng P. C., Witeof A. E., Mahon S. B., Brenner M., Boss G. R. and Bebarta V. S., A review on ingested cyanide: risks, clinical presentation, diagnostics, and treatment challenges. Journal of Medical Toxicology, 15, 128-133 (2019).
  39. Odoemelam C. S., Percival B., Ahmad Z., Chang M. W., Scholey D., Burton E., ... and Wilson P. B., Characterization Of Yellow Root Cassava And Food Products: Investigation of Cyanogenic Glycosides and Pro-Vitamin A. bioRxiv, 2020-04 (2020).
  40. Visioli F., Marangoni F., Fogliano V., Del Rio D., Martinez J. A., Kuhnle G., ... and Poli A., The ultra-processed foods hypothesis: A product processed well beyond the basic ingredients in the package. Nutrition Research Reviews, 1-31 (2022).
  41. Mohd Azmi A. F., Cyanogenic glycosides in cassava (Doctoral dissertation, University of Leeds) (2019).
  42. Okoli I. C., Okaparocha C. O., Chinweze C. E. and Udedibe A. B. I., Physicochemical and hydrogen cyanide content of three processed cassava products used for feeding poultry in Nigeria. Asian Journal of Animal Veterinary Advances. 7(4): 334-341 (2012).
  43. Mburu F. W., Sauda S. and Wilson N., African Journal of Food Science. 6(16):416420.  Available: AJFS DOI: 10.5897/AJFS12.058, ISSN 1996-0794 ©2012 Academic Journals (2012). 
  44. Winnie F. T., Chandramohanan A. and Anil L., Study on Total Cyanide Content in Cassava Products Available in Kerala. The Journal of Plant Science Research, 38(2), 603-608 (2022).
  45. Knoblauch A. M., Farnham A., Ouoba J., Zanetti J., Müller S., Jean-Richard V., ... and Winkler M. S., Potential health effects of cyanide use in artisanal and small-scale gold mining in Burkina Faso. Journal of cleaner production252, 119689 (2020).
  46. Nicodemas D., Nutritional Composition of Cassava Based Recipes and its Implication on the Nutrition Status of Children Aged 6-59 Months in Mtwara District (Doctoral dissertation, The Open University of Tanzania) (2020).
  47. Nnaji C. C. and Akanno C. C., Assessment of environmental degradation due to processing of cassava into Garri flakes using pollution indices. Environmental Processes9(3), 46 (2022).
  48. Fu X., Cassava as an Important Staple Food and Its Application in the Food Industry--A Review (2021).
  49. Sanni L. O., Standards for cassava products and guidelines for export. IITA (2005).