ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

1 Department of Food Science and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran

2 Master’s degree in food industry engineering- food chemistry

3 Department of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Acrylamide is a toxic chemical that is formed in starchy foods like potato chips and can cause cancer in humans. Therefore, its detection is of great importance. In this research, the performance of C24 fullerene as an electrocatalytic sensing material for acrylamide was checked out by DFT simulations. The obtained adsorption energies showed acrylamide interaction with C24 is experimentally feasible. The calculated thermodynamic parameters including ΔGad, ΔHad, and Kth showed acrylamide adsorption process is spontaneous, exothermic, and reversible. The NBO results demonstrated no chemical bond has created between acrylamide and fullerene in the adsorption procedure, hence the adsorption nature is a physisorption. The calculated frontier molecular orbital indices showed the bandgap of fullerene experienced a -52% decline after interacting with acrylamide. Therefore, this nanostructure can be employed as an excellent electrocatalytic sensing material for the fabrication of a new electrochemical sensor for the determination of acrylamide.  

Keywords

Main Subjects

     [1]       F. Wei, Y. Lin, Y. Wu, X. Sun, L. Liu, P. Zhou, Q. Hu, Anal. Methods., 6, 482 (2014).
      [2]       S. A. Ozkan, B. Dogan, B. Uslu, Microchim. Acta., 153, 27 (2006).
      [3]       B. Nigovic, A. Mornar, M. Sertic, Microchim. Acta., 183, 1459 (2016).
      [4]       B. Nigovic, J. Spajic, Talanta., 86, 393 (2011).
      [5]       M. A. El-Shal, Adv. Pharm. Bull., 3, 339 (2013).
      [6]       M. Nebsen, C. M. El-Maraghy, H. Salem, S. M. Amer, Anal. Bioanal. Electrochem., 8, 51 (2016).
      [7]       R. Valarmati, S. Akilandeswari, C. S. Dhivya dhharshini, S. Farishabanu, R. Senthamarai, Int. J. Parm. Chem. Sci., 3, 197 (2013).
 
      [8]       A. Bahrami, S. Seidi, T. Baheri, M. Aghamohammadi, Superlattice. Microst., 64, 265 (2013).
      [9]       S. Kumer, M. Ebrahimikia, M. Yari, Int. J. New. Chem., 7, 74 (2020).
     [10]     M. R. Jalali Sarvestani, R. Ahmadi, J. Water. environ. Nanotechnol., 4, 48 (2019).
     [11]     M. Nabati, V. Bodaghi-Namileh, Int. J. New. Chem., 6, 254 (2019).
     [12]     G. Mahmoudzadeh, Int. J. New. Chem., 6, 277 (2019).
     [13]     A. Mohasseb, Int. J. New. Chem., 6, 215 (2019).
     [14]     R. Ahamdi, M. R. Jalali Sarvestani, Iran. Chem. Comun., 7, 344 (2019).
     [15]     M. R. Jalali Sarvestani, R. Ahmadi, Chem. Methodol., 4, 40 (2020).
     [16]     R. Ahmadi, M. R. Ebrahimikia, Phys. Chem. Res., 4, 617 (2017).
     [17]     Nanotube Modeler. J. Crystal. Soft., 2014 software.
     [18]     Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016
     [19]     M. R. Jalali Sarvestani; M. Gholizadeh Arashti; B. Mohasseb.. Int. J. New. Chem., 7, 87 (2020).
[20] R. Ahmadi, M. R. Jalali Sarvestani, R. Taghavizad, N. Rahim, Chemical methodologies., 4, 68 (2020).