ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

1 Department of Food Industry, Faculty of Agriculture, Ferdowsi University of Mashhad,Mashhad, Iran

2 Department of Endocrinology and Metabolism, Medical Sciences University of Ilam, Iran

3 Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA

Abstract

In this study, we have conducted a detailed analysis of 10 recently synthesized chromen derivatives to evaluate their performance as electrocatalytic sensing materials for the detection of Li+ ions. Our investigation involved the use of Infra-red (IR) and frontier molecular orbital (FMO) computations to gain insights into the interactions between these derivatives and Li+ ions. The results obtained from our analysis revealed that the derivative with NO2 substitution in the meta position of the benzene ring exhibited the strongest interaction with Li+ ions. This was observed in both vacuum and aqueous phases, with Kf values of 5.429×10+48 and 1.036×10+23, respectively. Such a strong interaction suggests that this derivative has the potential to be an excellent candidate for the development of electrochemical sensors for the detection of Li+ ions. Furthermore, we also investigated the changes in the bandgap of this derivative during the complexation process. Our findings indicated that this particular derivative experienced the most significant changes in its bandgap, with a percentage decrease of -50.824. This observation highlights its potential as a selective and sensitive recognition element for the detection of Li+ ions. Overall, our research provides valuable insights into the performance of these chromen derivatives as electrocatalytic sensing materials for Li+ ion detection. The derivative with NO2 substitution in the meta position of the benzene ring emerges as a promising candidate due to its strong interaction with Li+ ions and significant changes in its bandgap during complexation. These findings pave the way for the development of new and improved electrochemical sensors for the detection of Li+ ions, which can have significant implications in various fields such as energy storage and battery technologies.

Keywords

Main Subjects

[1] R. Maggs, The British Journal of Psychiatry 109, 458 (1963).
[2] P. M. Freeman, S. A. Freeman. The American journal of medicine 119, 478 (2006).
[3] W. R. Licht, CNS neuroscience & therapeutics 18, 219 (2012).
[4] G. Groleau, Emergency medicine clinics of North America 12, 511 (1994).
[5] L. Vacaflor, L., H. E. Lehmann, T. A. Ban, Journal of Clinical Pharmacology & the Journal of New Drugs 24 (1970) 123.
[6] L. G. Gracia, et al, Talanta 44, 75 (1997).
[7] M. Zhao, et al. Electrochimica acta 49, 683 (2004).
[8] F.. Takekawa, R. Kuroda. Talanta 35, 737 (1988).
[9] R. L. et al. Clinical chemistry 34, 1500 (1988).
[10] H. Karimi-Maleh, et al. Food and Chemical Toxicology 164, 112961 (2022).
[11] M. R. Jalali Sarvestani, and Z. Doroudi. Chemical Papers 75, 4177 (2021).
[12] GaussView, Version 6, Dennington R., Keith T. A., Millam J. M., Semichem Inc., Shawnee Mission, KS, (2016).
[13] Gaussian 16, Revision C.01, Frisch G.E.S.M.J., Trucks G.W., Schlegel H.B., Robb B.M.M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson H.P.H.G.A., Nakatsuji H., Caricato M., Li X., Izmaylov M.H.A.F., Bloino J., Zheng G., Sonnenberg J.L., Ehara T.N.M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Honda J.Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta E.B.J.E., Ogliaro F., Bearpark M., Heyd J.J., Kudin J.N.K.N., Staroverov V.N., Kobayashi R., Raghavachari J.T.K., Rendell A., Burant J.C., Iyengar S.S., Cossi J.B.C.M., Rega N., Millam J.M., Klene M., Knox J.E., Bakken R.E.S.V., Adamo C., Jaramillo J., Gomperts R., Yazyev J.W.O.O., Austin A.J., Cammi R., Pomelli C., Martin G.A.V.R.L., Morokuma K., Zakrzewski V.G., Salvador A.D.D.P., Dannenberg J.J., Dapprich S., Farkas J.C.O., Foresman J.B., Ortiz J.V., Fox D.J., (n.d.) Gaussian, Inc., Wallingford CT, (2016).
[14] M. R. Jalali Sarvestani, L. Hajiaghababaei, J. Najafpour, S. Suzangarzadeh. Analytical and Bioanalytical Electrochemistry. 10, 675 (2018).
[15] M. R. Jalali Sarvestani, T. Madrakian, A. Afkhami, B. Ajdari, Microchemical Journal. 188, 108483 (2023).
[16] M. R. Jalali Sarvestani, Z. Doroudi, Russian Journal of Physical Chemistry A. 96, 1750 (2022).
[17] A. Hassanpour, et al. Computational and Theoretical Chemistry. 1197, 113163 (2021).
[18] M. R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb. International Journal of New Chemistry. 7, 87 (2020).
[19] R. Ahmadi, M. R. Jalali Sarvestani. Russian Journal of Physical Chemistry B. 14, 198 (2020).
[20] M. R. Jalali Sarvestani, R. Ahmadi. International Journal of New Chemistry. 5, 1 (2018).