[1] Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
[2] Belin, T. & Epron, F. Characterization methods of carbon nanotubes: a review. Materials Science and Engineering: B 119, 105–118 (2005).
[3] Kroto H.W., Walton D.R.M. (Eds.) The Fullerenes: New... Available at: https://sciarium.com/file/21914/.
[4] Rahmandoust, M. & Öchsner, A. Buckling Behaviour and Natural Frequency of Zigzag and Armchair Single-Walled Carbon Nanotubes. Journal of Nano Research 16, 153–160 (2012).
[5] Mohammad Taghi Ahmadi, J. F. W. Carbon-Based Materials Concepts and Basic Physics: Mohammad Taghi Ahm. Taylor & Francis (2018). Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315217185-2/carbon-based-materials-concepts-basic-physics-mohammad-taghi-ahmadi-jeffrey-frank-webb-razali-ismail-moones-rahmandoust.
[6] Varshney, K. Carbon nanotubes: a review on synthesis, properties, and applications. International journal of engineering research and general science 2, 660–677 (2014).
[7] Kaushik, B. K. & Majumder, M. K. Carbon Nanotube-Based VLSI Interconnects. SpringerBriefs in Applied Sciences and Technology (2015). doi:10.1007/978-81-322-2047-3.
[8] Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G. & Machnikowski, J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta 49, 515–523 (2004).
[9] Banks, C. E. & Compton, R. G. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. The Analyst 131, 15–21 (2006).
[10] Thostenson, E. T., Ren, Z. & Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology (2001). Available at: https://www.sciencedirect.com/science/article/abs/pii/S026635380100094X.
[11] Tserpes, K. & Papanikos, P. Finite element modeling of single-walled carbon nanotubes. Composites Part B: Engineering 36, 468–477 (2005).
[12] Li, C. & Chou, T.-W. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures 40, 2487–2499 (2003).
[13] Vairavapandian, D., Vichchulada, P. & Lay, M. D. Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing. Analytica Chimica Acta 626, 119–129 (2008).
[14] Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon (2000). Available at: https://www.sciencedirect.com/science/article/abs/pii/0008622395000178.
[15] Trojanowicz, M. Analytical applications of carbon nanotubes: a review. TrAC Trends in Analytical Chemistry 25, 480–489 (2006).
[16] Guo, T., Nikolaev, P., Thess, A., Colbert, D. T. & Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters (2000). Available at: https://www.sciencedirect.com/science/article/abs/pii/000926149500825O.
[17] Hafner, J. H. et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters (1998). Available at: https://www.sciencedirect.com/science/article/abs/pii/S0009261498010240.
[18] Lebedkin, S. et al. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon (1970). Available at: https://www.infona.pl/resource/bwmeta1.element.elsevier-bfe754c5-e9b3-31b4-81d5-cd69fb6c8b20.
[19] Venkataraman, A., Amadi, E. V., Chen, Y. & Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications - Nanoscale Research Letters. SpringerOpen (2019). Available at: https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-019-3046-3.
[20] Darkrim, F., Malbrunot, P. & Tartaglia, G. Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy 27, 193–202 (2002).
[21] Shi, D., Guo, Z. & Bedford, N. Carbon Nanotubes. Nanomaterials and Devices (2014). Available at: https://www.sciencedirect.com/science/article/pii/B9781455777549000032?via=ihub.
[22] Tibbetts, G. G., Meisner, G. P. & Olk, C. H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon (2001). Available at: https://www.sciencedirect.com/science/article/abs/pii/S0008622301000513.
[23] Ong, Y. T., Ahmad, A. L., Zein, S. H. S. & Tan, S. H. A review on carbon nanotubes in environmental protection and green engineering perspective. Brazilian Journal of Chemical Engineering (2010). Available at: https://www.scielo.br/j/bjce/a/LQ6X7LcrZnbWrhFMpnBGsVh/?lang=en.
[24] Wong, K. V. & Bachelier, B. Carbon Nanotubes Used for Renewable Energy Applications and Environmental Protection/Remediation: A Review. Journal of Energy Resources Technology 136, (2013).
[25] Sgobba, V. & Guldi, D. M. Carbon nanotubes as integrative materials for organic photovoltaic devices. J. Mater. Chem. 18, 153–157 (2008).
[26] Cataldo, S., Salice, P., Menna, E. & Pignataro, B. Carbon nanotubes and organic solar cells. Energy & Environmental Science (2011). Available at: https://pubs.rsc.org/en/content/articlelanding/2012/EE/C1EE02276H.
[27] Scharber, M. C. et al. Design Rules for Donors in Bulk‐Heterojunction Solar Cells-Towards 10 % Energy‐Conversion Efficiency. Wiley Online Library (2006). Available at: https://onlinelibrary.wiley.com/doi/10.1002/adma.200501717.
[28] Fan, W., Zhang, L. & Liu, T. Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications. Ghent University Library (1970). Available at: https://lib.ugent.be/catalog/ebk01:3710000000943925.
[29] Cheng, H., Shapter, J. G., Li, Y. & Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry (2020). Available at: https://www.sciencedirect.com/science/article/abs/pii/S2095495620306197.
[30] Carbon Nanotubes for Photoconversion and Electrical Energy Storage. ACS Publications Available at: https://pubs.acs.org/doi/abs/10.1021/cr9003314.
[31] Wilson, I. A. G., Hall, P. & Rennie, A. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science (2016). Available at: https://www.academia.edu/5480796/Energy_storage_in_electrochemical_capacitors_designing_functional_materials_to_improve_performance.
[32] Wang, Y. et al. Mesoporous Transition Metal Oxides for Supercapacitors. MDPI (2015). Available at: https://www.mdpi.com/2079-4991/5/4/1667/htm.
[33] Frackowiak, E., Metenier, K., Bertagna, V. & Beguin, F. Supercapacitor electrodes from multiwalled carbon nanotubes. AIP Publishing (2000). Available at: https://aip.scitation.org/doi/abs/10.1063/1.1290146.
[34] Samimi, A., Zarinabadi, S. & Bozorgian, A. Optimization of Corrosion Information in Oil and Gas Wells Using Electrochemical Experiments. International Journal of New Chemistry (2021). Available at: http://www.ijnc.ir/article_38724.html.
[35] Kjelstrup, S. Theory of Thermocells. Journal of The Electrochemical Society (2016). Available at: https://www.academia.edu/20565461/Theory_of_Thermocells.
[36] Romano MS; Razal JM; Antiohos D; Wallace G; Chen J; Nano-Carbon Electrodes for Thermal Energy Harvesting. Journal of nanoscience and nanotechnology Available at: https://pubmed.ncbi.nlm.nih.gov/26328301/.
[37] Gonçalves, R. S. & Ikeshoji, T. Comparative Studies of a Thermoelectric Converter by a Thermogalvanic Cell with a Mixture of Concentrated Potassium Ferrocyanide and Potassium Ferricyanide Aqueous Solutions at Great Temperatures Differences. Journal Of The Brazilian Chemical Society 3, 98–101 (1992).
[38] Rdest, M. & Janas, D. Carbon Nanotube Wearable Sensors for Health Diagnostics. Sensors (Basel, Switzerland) (2021). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433779/.
[39] Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Edition. Wiley.com (2000). Available at: https://www.wiley.com/en-in/Electrochemical Methods: Fundamentals and Applications, 2nd Edition-p-9780471043720.
[40] Singh, K. K., Singh, A. & Rai, S. A study on nanomaterials for water purification. Materials Today: Proceedings (2021). doi:10.1016/j.matpr.2021.07.116.