ISC, DOAJ, CAS, Google Scholar......

Document Type : Review

Authors

1 Department of Chemistry, Dr. Hari Singh Gour Central University, Sagar-470003, IN

2 Dr. Hari Singh Gour University, Sagar, M.P. India

3 Dr. Hari Singh Gour University Sagar M.P

4 Dr. Hari Singh Gour Central University, Sagar-470003, IN

Abstract

Graphene and carbon nanotubes (CNTs) have gotten a lot of attention because of their varied nanostructures, making it a very intriguing and comprehensive topic in nanotechnology. Graphene and carbon nanotubes (CNTs) both have unique electrical, mechanical, thermal, catalytic, and electrochemical features because they are made up of sp2 hybridized carbon atoms. Carbon nanotube hybrid nanostructured materials (CNT hybrid nanocomposites), Carbon nanotubes (CNTs), and nanotechnology have the potential to improve energy conversion and storage device applications. Carbon nanotubes are being evaluated for application in renewable energy sources, including solar cells and hydrogen storage. Carbon nanotubes (CNTs) are utilized in storage technologies such as Li-ion batteries, supercapacitors, and thermal energy harvesting. We describe the functions of carbon nanotubes (CNTs) in new energy storage technologies, particularly electrochemical supercapacitors and Lithium-ion batteries, in this study. The use of carbon nanotubes in binder-free electrodes, microscaled current collectors, and adaptable and stretchy energy storage systems is also explored.

Keywords

Main Subjects

[1] Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
[2] Belin, T. & Epron, F. Characterization methods of carbon nanotubes: a review. Materials Science and Engineering: B 119, 105–118 (2005).
[3] Kroto H.W., Walton D.R.M. (Eds.) The Fullerenes: New... Available at: https://sciarium.com/file/21914/.
[4] Rahmandoust, M. & Öchsner, A. Buckling Behaviour and Natural Frequency of Zigzag and Armchair Single-Walled Carbon Nanotubes. Journal of Nano Research 16, 153–160 (2012).
[5] Mohammad Taghi Ahmadi, J. F. W. Carbon-Based Materials Concepts and Basic Physics: Mohammad Taghi Ahm. Taylor & Francis (2018). Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315217185-2/carbon-based-materials-concepts-basic-physics-mohammad-taghi-ahmadi-jeffrey-frank-webb-razali-ismail-moones-rahmandoust.
[6] Varshney, K. Carbon nanotubes: a review on synthesis, properties, and applications. International journal of engineering research and general science 2, 660–677 (2014).
[7] Kaushik, B. K. & Majumder, M. K. Carbon Nanotube-Based VLSI Interconnects. SpringerBriefs in Applied Sciences and Technology (2015). doi:10.1007/978-81-322-2047-3.
[8] Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G. & Machnikowski, J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta 49, 515–523 (2004).
[9] Banks, C. E. & Compton, R. G. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. The Analyst 131, 15–21 (2006).
[10] Thostenson, E. T., Ren, Z. & Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology (2001). Available at: https://www.sciencedirect.com/science/article/abs/pii/S026635380100094X.
[11] Tserpes, K. & Papanikos, P. Finite element modeling of single-walled carbon nanotubes. Composites Part B: Engineering 36, 468–477 (2005).
[12] Li, C. & Chou, T.-W. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures 40, 2487–2499 (2003).
[13] Vairavapandian, D., Vichchulada, P. & Lay, M. D. Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing. Analytica Chimica Acta 626, 119–129 (2008).
[14] Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon (2000). Available at: https://www.sciencedirect.com/science/article/abs/pii/0008622395000178.
[15] Trojanowicz, M. Analytical applications of carbon nanotubes: a review. TrAC Trends in Analytical Chemistry 25, 480–489 (2006).
[16] Guo, T., Nikolaev, P., Thess, A., Colbert, D. T. & Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters (2000). Available at: https://www.sciencedirect.com/science/article/abs/pii/000926149500825O.
[17] Hafner, J. H. et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters (1998). Available at: https://www.sciencedirect.com/science/article/abs/pii/S0009261498010240.
[18] Lebedkin, S. et al. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon (1970). Available at: https://www.infona.pl/resource/bwmeta1.element.elsevier-bfe754c5-e9b3-31b4-81d5-cd69fb6c8b20.
[19] Venkataraman, A., Amadi, E. V., Chen, Y. & Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications - Nanoscale Research Letters. SpringerOpen (2019). Available at: https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-019-3046-3.
[20] Darkrim, F., Malbrunot, P. & Tartaglia, G. Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy 27, 193–202 (2002).
[21] Shi, D., Guo, Z. & Bedford, N. Carbon Nanotubes. Nanomaterials and Devices (2014). Available at: https://www.sciencedirect.com/science/article/pii/B9781455777549000032?via=ihub.
[22] Tibbetts, G. G., Meisner, G. P. & Olk, C. H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon (2001). Available at: https://www.sciencedirect.com/science/article/abs/pii/S0008622301000513.
[23] Ong, Y. T., Ahmad, A. L., Zein, S. H. S. & Tan, S. H. A review on carbon nanotubes in environmental protection and green engineering perspective. Brazilian Journal of Chemical Engineering (2010). Available at: https://www.scielo.br/j/bjce/a/LQ6X7LcrZnbWrhFMpnBGsVh/?lang=en.
[24] Wong, K. V. & Bachelier, B. Carbon Nanotubes Used for Renewable Energy Applications and Environmental Protection/Remediation: A Review. Journal of Energy Resources Technology 136, (2013).
[25] Sgobba, V. & Guldi, D. M. Carbon nanotubes as integrative materials for organic photovoltaic devices. J. Mater. Chem. 18, 153–157 (2008).
[26] Cataldo, S., Salice, P., Menna, E. & Pignataro, B. Carbon nanotubes and organic solar cells. Energy & Environmental Science (2011). Available at: https://pubs.rsc.org/en/content/articlelanding/2012/EE/C1EE02276H.
[27] Scharber, M. C. et al. Design Rules for Donors in Bulk‐Heterojunction Solar Cells-Towards 10 % Energy‐Conversion Efficiency. Wiley Online Library (2006). Available at: https://onlinelibrary.wiley.com/doi/10.1002/adma.200501717.
[28] Fan, W., Zhang, L. & Liu, T. Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications. Ghent University Library (1970). Available at: https://lib.ugent.be/catalog/ebk01:3710000000943925.
[29] Cheng, H., Shapter, J. G., Li, Y. & Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry (2020). Available at: https://www.sciencedirect.com/science/article/abs/pii/S2095495620306197.
[30] Carbon Nanotubes for Photoconversion and Electrical Energy Storage. ACS Publications Available at: https://pubs.acs.org/doi/abs/10.1021/cr9003314.
[31] Wilson, I. A. G., Hall, P. & Rennie, A. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science (2016). Available at: https://www.academia.edu/5480796/Energy_storage_in_electrochemical_capacitors_designing_functional_materials_to_improve_performance.
[32] Wang, Y. et al. Mesoporous Transition Metal Oxides for Supercapacitors. MDPI (2015). Available at: https://www.mdpi.com/2079-4991/5/4/1667/htm.
[33] Frackowiak, E., Metenier, K., Bertagna, V. & Beguin, F. Supercapacitor electrodes from multiwalled carbon nanotubes. AIP Publishing (2000). Available at: https://aip.scitation.org/doi/abs/10.1063/1.1290146.
[34] Samimi, A., Zarinabadi, S. & Bozorgian, A. Optimization of Corrosion Information in Oil and Gas Wells Using Electrochemical Experiments. International Journal of New Chemistry (2021). Available at: http://www.ijnc.ir/article_38724.html.
[35] Kjelstrup, S. Theory of Thermocells. Journal of The Electrochemical Society (2016). Available at: https://www.academia.edu/20565461/Theory_of_Thermocells.
[36] Romano MS; Razal JM; Antiohos D; Wallace G; Chen J; Nano-Carbon Electrodes for Thermal Energy Harvesting. Journal of nanoscience and nanotechnology Available at: https://pubmed.ncbi.nlm.nih.gov/26328301/.
[37] Gonçalves, R. S. & Ikeshoji, T. Comparative Studies of a Thermoelectric Converter by a Thermogalvanic Cell with a Mixture of Concentrated Potassium Ferrocyanide and Potassium Ferricyanide Aqueous Solutions at Great Temperatures Differences. Journal Of The Brazilian Chemical Society 3, 98–101 (1992).
[38] Rdest, M. & Janas, D. Carbon Nanotube Wearable Sensors for Health Diagnostics. Sensors (Basel, Switzerland) (2021). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433779/.
[39] Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Edition. Wiley.com (2000). Available at: https://www.wiley.com/en-in/Electrochemical Methods: Fundamentals and Applications, 2nd Edition-p-9780471043720.
[40] Singh, K. K., Singh, A. & Rai, S. A study on nanomaterials for water purification. Materials Today: Proceedings (2021). doi:10.1016/j.matpr.2021.07.116.