Study of B12N12 and AlB11N12 Fullerene as H2S Absorbent and Sensor by Computational Method

Document Type: Research Paper

Authors

Department of Chemistry, College of chemistry, Yadegar-e-Imam Khomeini(RAH) Shahre Rey Branch, Islamic Azad University,Tehran, Iran

Abstract

The absorption of the H2S on the small boron nitride fullerene (B12N12) and its Al-inserted analog was theoretically analyzed by density functional theory. The structural stability was based on the minimum energy and non-complex vibrational frequencies. Different sites and orientations of H2S, using the monomer unit, were considered. Compared with the weak physisorption on the pristine B12N12, the H2S molecule presents strong physisorption on both Al-inserted fullerene, as indicated by the calculated geometrical structures and electronic properties for these systems. It is suggested that the Al-inserted B12N12 presents high sensitivity to H2S. Based on calculated results, the Al-inserted B12N12 is expected to be a potential novel sensor for detecting the presence of H2S.

Keywords


1. R. P. Smith, Toxic response of the blood, In CasarettandDoulls Toxicology The Basic Science of Poisons, 3rd ed., C. D. Klaassen, M. O. Amdur, J. Doull (Eds), Macmillan Publishing Company, New York, NY, 1986.
2. D. Borisova, V. Antonov, A. Proykova, Int. J. Quantum Chem., 113 (2013) 786.
3. T. A. Gossel, J. D. Bricker, Principles of clinical Toxicology, 3rd Ed , Raven Press, New York, NY 109.
4. R. C. Baselt, Disposition of Toxic Drugs and Chemicals in Man, Chemical Toxicology Institute, Foster City, CA 424.
5. M. N. Gleason, R. E. Gosselin, H. C. Hodge, R. P. Smith, Clinical Toxicology Commercial Product-Acute Poisoning, The Williams &Wilkins Co, Baltimore 120.
6. N.G.Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science ,269 (1995) 966.
7. I. Narita, T. Oku, Diamond Relat. Mater., 12 (2003) 1146.
8. S. Iijima, C. J. Brabec, A.Maiti, J. Bernholc, J. Chem. Phys., 104 (1996) 2089.
9. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 318 (1985) 162.
10. R.C. Haddon, Chem. Phys. Lett., 125 (1986) 231.
11. S.J. Cyvin, E. Brendsdal, B.N. Cyvin, J. Brunvoll, Chem. Phys. Lett., 143 (1988) 377.
12. J. M. Hawkins, A. Meyer, T. A. Lewis, S. Loren, F.J. Hollander, Science, 252 (1991) 312.
13. S. Saito, A. Oshiyama, Phys. Rev. Lett., 66 (1991) 2637.
14. P. J. Fagan, J.C. Calabrese, B. Malone, Science, 252 (1991) 1160.
15. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett., 60 (1992) 2204.
16. R. Saito, G. Dresselhaus, M.S. Dresselhaus, J. Appl. Phys., 73 (1993) 494.
17. M. Terauchi, M. Tanaka, H. Matsuda, M. Takeda, K. Kimura, J. Electron Microsc., 46 (1997) 75.
18. O. Stephan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, T. Sato, Appl. Phys., A 67 (1998) 107.
19. D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Appl. Phys. Lett., 73 (1998) 2441.
20. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett., 76 (1996) 4737.
Journal of New Chemistry, 2015, 2 (5), 172-178 K. Kalateh et al
Submit the manuscript to www.ijnc.ir
page 178
21. M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Ramos, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett., 259 (1996) 568.
22. D. Goldberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Appl. Phys. Lett., 69 (1996) 2045.
23. M. Terauchi, M. Tanaka, T. Matsumoto, Y. Saito, J. Electron Microsc., 47 (1998) 319.
24. Y. Chen, J. Fitz Gerald, J.S. Williams, S. Bulcock, Chem. Phys. Lett., 299 (1999) 260.
25. T. Hirano, T. Oku, K. Suganuma, J. Mater. Chem., 9 (1999) 855.
26. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Scr. Mater., 44 (2001) 1561
27. D. B. Zhang, E. Akatyeva, T. Dumitrica, Phys, Rev., B 84 (2011) 115431.
28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, 2003.
29. A. D. Becke, The Journal of Chemical Physics, 98 (1993) 5648-5652.
30. C. Lee, W. Yang and R. G. Parr, Physical Review B, 37 (1988) 785-789.
31. S. Binkley, J. A. Pople and W. J. Hehre, Journal of the American Chemical Society, 102 (1980) 939-947.
32. X. Y. Cuib, J. F. g Jia, B. S. Yang, P. Yang a, H. S. Wub, Journal of Molecular Structure: THEOCHEM, 953 (2010) 1–6