ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper


Department of Chemistry, College of chemistry, Yadegar-e-Imam Khomeini(RAH) Shahre Rey Branch, Islamic Azad University,Tehran, Iran.


The stable configurations, electronic structure and magnetic properties of B16N16, B8C24, Al and P inserted (BC3)8 was studied by performing density functional theory (DFT) calculations of the NMR parameters. The results indicate that B8C24 has semiconductivity property and be effectively modified by inserting groups due to the introduction of certain impurity states within the band gap of the pristine nanostructure, thereby reducing the band gaps. The band gap B8C24 cage is reduced from 2.18 eV to 1.96 (for Al-inserted) and 1.76 eV (for P-inserted), respectively. The calculation of  chemical shielding (CS) tensors shown that the B8C24 inserted with Al and P atoms possess a C3v local symmetry with special chemical shifts patterns. Theoretical analyses by molecular orbital under C3v symmetry explain the impurity energy levels and chemical sheilding tensors.The present results are expected to open a way to change the electronic and magnetic properties of studied nanocages, which is helpful to design or develop novel nanodevices based on these structures.


1. Seif, A., Boshra, A., Journal of Molecular Structure: THEOCHEM 2009, 895 (1–3), 96-99.
2. Mirzaei, M., Physica E: Low-dimensional Systems and Nanostructures 2009, 41 (5), 883-885.
3. Wang, R., Zhang, D., Liu, C., Computational Materials Science 2014, 82, 361-366.
4. Mirzaei, M., Physica E: Low-dimensional Systems and Nanostructures 2010, 42 (7), 1954-1957.
5. Li, L. L., Yang, S. Q., Yang, X. J., Xu, X. W., Tang, C. C., Journal of Molecular Structure 2012, 1020, 183-187.
6. Zahedi, E., Seif, A., Physica E: Low-dimensional Systems and Nanostructures 2011, 44 (1), 179-185.
7. Zhao, J.-x., Ding, Y.-h., Journal of Physics and Chemistry of Solids 2009, 70 (6), 1030-1033.
8. Zahedi, E., Bodaghi, A., Seif, A., Boshra, A., Superlattices and Microstructures 2011, 49 (2), 169-175.
9. Bagheri, Z.; Abolhassani, M. R.; Hadipour, N. L., Physica E: Low-dimensional Systems and Nanostructures 2008, 41 (1), 124-129.
10. Liu, Y.-j.; Gao, B.; Xu, D.; Wang, H.-m.; Zhao, J.-x., Physics Letters A 2014, 378 (40), 2989-2994.
11. Zhang, Z.; Geng, Z.; Cai, D.; Pan, T.; Chen, Y.; Dong, L.; Zhou, T., Physica E: Low-dimensional Systems and Nanostructures 2015, 65, 24-29.
12. Tang, S.-l., Liu, Y.-j., Wang, H.-x., Zhao, J.-x., Cai, Q.-h., Wang, X.-z., Diamond and Related Materials 2014, 44, 54-61.
13. Sen, D., Thapa, R., Bhattacharjee, K., Chattopadhyay, K. K., Computational Materials Science 2012, 51 (1), 165-171.
14. Moradian, R., Shahrokhi, M., Sadat Charganeh, S., Moradian, S., Physica E: Low-dimensional Systems and Nanostructures 2012, 46, 182-188.
15. Mirzaei, M., Yousefi, M., Meskinfam, M., Superlattices and Microstructures 2012, 51 (6), 809-813.
International Journal of New Chemistry, 2 015, 2(6), 212-221 K. Kalateh et al
Submit the manuscript to
Page 221
16. Nouri, A., Mirzaei, M., Journal of Molecular Structure: THEOCHEM 2009, 913 (1–3), 207-209.
17. Abdullahi, Y. Z., Rahman, M. M., Shuaibu, A., Abubakar, S., Zainuddin, H., Muhida, R., Setiyanto, H., Physica B: Condensed Matter 2014, 447, 65-69.
18. Padilha, J. E., Pontes, R. B., da Silva, A. J. R., Fazzio, A., Solid State Communications 2013, 173, 24-29.
19. Ilyasov, V. V., Meshi, B. C., Nguyen, V. C., Ershov, I. V., Nguyen, D. C., Solid State Communications 2014, 199, 1-10.
20. Wang, S.-F., Zhang, J.-M., Xu, K.-W., Physica B: Condensed Matter 2010, 405 (4), 1035-1039.
21. Xi, Y., Zhao, X., Wang, A., Wang, X., Bu, H., Zhao, M., Physica E: Low-dimensional Systems and Nanostructures 2013, 49, 52-60.
22. Anafche, M., Naderi, F., 2012.
23. Anafcheh, M., Ghafouri, R., Monatsh Chem 2014, 145 (3), 411-419.
24. Xu, X., Shang, Z., Wang, G., Li, R., Cai, Z., Zhao, X., The Journal of Physical Chemistry A 2005, 109 (16), 3754-3761.
25. Pattanayak, J., Kar, T., Scheiner, S., The Journal of Physical Chemistry A 2002, 106 (12), 2970-2978.
26. Anafcheh, M., Ghafouri, R., Computational and Theoretical Chemistry 2012, 1000, 85-91.
27. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Laham, A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A., ed., Vol., 2003.
28. Becke, A. D., The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
29. Lee, C., Yang, W., Parr, R. G., Physical Review B 1988, 37 (2), 785-789.
30. Binkley, J. S., Pople, J. A., Hehre, W. J., Journal of the American Chemical Society 1980, 102 (3), 939-947.
31. Drago, R.S., Physical Methods for Chemists, Saunders, New York, 1992