ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

Chemical Process Design Research Group, ACECR, Faculty of Engineering, University of Tehran, P.O. Box 1417943851, Tehran, Iran

Abstract

The present paper explores a new economical method for the synthesis of oleamide in the presence of catalyst at atmospheric pressure. Oleamide is mainly synthesized by ammonolysis of fatty acid or esters with ammonia gas at high pressure. Yet, using the urea instead of ammonia gas provides an economical reaction at atmospheric pressure. The structure of synthesized oleamide is characterized by FTIR analysis. The effect of oleic acid / urea molar ratio, time and temperature of reaction as well as amount of catalyst on the acid values or conversion of reaction is studied. The optimum condition for the synthesis of oleamide from oleic acid and urea is obtained to be oleic acid / urea molar ratio of 1:4, temperature of 200 ℃ and time reaction of 180 min with 1 wt% catalyst concentration. At this condition the acid value of 56 was achieved. Also, the reaction mechanism and kinetic were investigated in which ammonolysis followed pseudo-first order kinetics.

Keywords

[1] P. Getachew, M. Getachew, J. Joo, Y. S. Choi, D. S. Hwang, Y. K. Hong, J. Toxicol. Environ. Health. Sci., 8, 341 (2016).
[2] J. Markarian, Plast. Addt. Compound., 9, 32 (2007)
[3] A. Maltby, R. E. Marquis, J. Plast. Film. Sheeting., 114, 111 (1998)
[4] N. P. Awasthi, S. RP, J. oleo sci., 56, 507 (2007).
[5] F. Coelho, L. F. Vieira, R. Benavides, M. Marques da Silva Paula, A. M. Bernardin, R. F. Magnago, L. da Silva, J. Polym. Process. Soc., 30, 574 (2015).
[6] O. Abel-Anyebe, N. Idris, D. Keita, K. I. Ekpenyong, M. A. Yakubu, Sci. J. Anal. Chem., 8, 18 (2020).
[7] T. Suglura, S. Kondo, T. Kodaka, T. Tonegawa, S. Nakane, A. Yamashita, Y. Ishlma, K. Waku, Biochem. Mol. Biol. Int., 40, 931 (1996).
[8] O. Abel-Anyebe, K. I. Ekpenyong, A. Eseyin, Int. J. Chem., 5, 80 (2013).
[9] O. A. Anyebe, K. I. Ekpenyong, Eur. J. Sci. Res., 16, 474 (2007).
[10] T.Z. Li, J. Lamont, Process for the production of carboxylic amides using alkyltin catalysts, US Patent 4277410 (1980).
[11] T. Eikelboom, J.A. Rand, P.M. Van Dijk, Catalytic preparation of carbonamides, CA Patent 1241343A (1983).
[12] N. P. Awasthi, R.P. Singh, Eur. J. Lipid Sci. Technol., 111, 202 (2009).
[13] Shimazdu, Investigation of Additives in Plastics by FTIR-ATR Spectroscopy, Available online in: https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/ literature/ FTIR/A467.pdf
[14] W. Simka, J. Piotrowski, A. Robak, G. Nawrat, J. Appl. Electrochem., 39, 1137 (2009).
[15] M.A. Pearson, R.P. Hausinger, P.A. Karplus, J. Inorg. Biochem., 67, 179 (1997).

[1] P. GetachewM. GetachewJ. JooY.S. ChoiD.S. Hwang, Y.K. Hong,  J. Toxicol. Environ. Health. Sci., 8, 341 (2016).

[2] J. Markarian, Plast. Addt. Compound., 9, 32 (2007)

[3] A. MaltbyR.E. Marquis, J. Plast. Film. Sheeting., 114, 111 (1998)

[4] N. P. Awasthi, S. RP, J. oleo sci., 56, 507 (2007).

[5] F. Coelho, L.F. Vieira, R. Benavides, M. Marques da Silva Paula, A.M. Bernardin, R.F. Magnago, L. da Silva, J. Polym. Process. Soc., 30, 574 (2015).

[6] O. Abel-Anyebe, N. Idris, D. Keita, K. I. Ekpenyong, M. A. Yakubu, Sci. J. Anal. Chem., 8, 18 (2020).
[7] T. Suglura, S. Kondo, T. Kodaka, T. Tonegawa, S. Nakane, A. Yamashita, Y. Ishlma, K. Waku, Biochem. Mol. Biol. Int., 40, 931 (1996).
[8] O. Abel-Anyebe, K. I. Ekpenyong, A. Eseyin, Int. J. Chem., 5, 80 (2013).
[9] O. A. Anyebe, K. I. Ekpenyong, Eur. J. Sci. Res., 16, 474 (2007).
[10] T.Z. Li, J. Lamont, Process for the production of carboxylic amides using alkyltin catalysts, US Patent 4277410 (1980).
[11] T. Eikelboom, J.A. Rand, P.M. Van Dijk, Catalytic preparation of carbonamides, CA Patent 1241343A (1983).
[12] N. P. Awasthi, R.P. Singh, Eur. J. Lipid Sci. Technol., 111, 202 (2009).
[13] Shimazdu, Investigation of Additives in Plastics by FTIR-ATR Spectroscopy, Available online in: https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/ literature/ FTIR/A467.pdf
[14] W. Simka, J. Piotrowski, A. Robak, G. Nawrat, J. Appl. Electrochem., 39, 1137 (2009).
[15] M.A. Pearson, R.P. Hausinger, P.A. Karplus, J. Inorg. Biochem., 67, 179 (1997).