The role of insertion of Li atom in C60-Porphyrin-Metalloporphyrin, M = (V, Cr, Ni, Cu) as dyes in the DSSC by using the theoretical outlook

Document Type : Research Paper

Authors

1 Chemistry Department, Sciences Faculty, Hamedan Branch, Islamic Azad University

2 Chemistry Department, Sciences Faculty, Arak Branch, Islamic Azad University

3 Chemistry Department, Sciences Faculty, Hamedan Branch, Islamic Azad Universiry

Abstract

In the present investigation, density functional theory with Grimme correction and time-dependent semi-empirical ZINDO/S approaches have been employed to scrutinized supra-molecular triad system as a dye sensitizer and also effect of insertion of Li atom into the C60 cavity. The impacts of the kind of transition metal in the Porphyrin ring and insertion of Li atom in the C60 fullerene on the energies of frontier molecular orbital (FMO) and UV–Vis spectra have been considered. Structural optimizations of supra-molecular triad and quantum molecular descriptor (QMD) have been carried out through the SIESTA package. We have analyzed charge transfer between two interacting species trough well-known Mulliken, Hirshfeld and Voronoi charges analysis. In addition light-harvesting efficiency (LHE), electronic transitions, chemical hardness (η), electrophilicity index (ω), electron accepting power (ω+) have been obtained with using the Orca package. We can learn that supra-molecular triad complexes Li@C60–Porphyrin–Metalloporphyrine (M = V, Cr, Ni and Cu) with low energy gap, highest light-harvesting efficiency (LHE) are outstanding efficient as Dye-sensitized solar cell (DSSC) industry.

Keywords

Main Subjects


[1] M. Grätzel, Nature, 414, 338. (2011); bP.V. Kamat, J. Phys. Chem. C, 111, 2834. (2007); cC.Y. Chen, S.J. Wu, J.Y. Li, C.G. Wu, J.G. Chen and K.C. Ho, Adv. Mater., 19, 3888. (2007); R. Ghiasi, M. Manoochehri and R. Lavasani, Russian Journal of Inorganic Chemistry, 61, 1267. (2016).
[2] J. Jie, Q. Xu, G. Yang, Y. Feng and B. Zhang, Dyes Pigm., 174, 107984. (2020).
[3] K. Portillo-Cortez, A. Martinez, A. Dutt and G. Santana, J. Phys. Chem. A, 123, 10930. (2019).
[4] M. Grätzel, J. Photochem. Photobiol., A, 164, 3. (2004); bL.-L. Li, Y.-C. Chang, H.-P. Wu and E.W.-G. Diau, Int. Rev. Phys. Chem., 31, 420. (2012); cY. Guo, X. Lu, G. Li, L. Zhao, S. Wei and W. Guo, J. Photochem. Photobiol., A, 332, 232. (2017).
[5] A. Mishra, M.K. Fischer and P. Bäuerle, Angew. Chem. Int. Ed., 48, 2474. (2009); bZ.S. Wang, Y. Cui, K. Hara, Y. Dan‐oh, C. Kasada and A. Shinpo, Adv. Mater., 19, 1138. (2007).
[6] H. Im, S. Kim, C. Park, S.-H. Jang, C.-J. Kim, K. Kim, N.-G. Park and C. Kim, Chem. Commun., 46, 1335. (2010).
[7] Y.-S. Chen, C. Li, Z.-H. Zeng, W.-B. Wang, X.-S. Wang and B.-W. Zhang, J. Mater. Chem., 15, 1654. (2005).
[8] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, Chemical Communications, 2198. (2009).
[9] D. Kuang, S. Uchida, R. Humphry‐Baker, S.M. Zakeeruddin and M. Grätzel, Angew. Chem. Int. Ed., 120, 1949. (2008).
[10] C. Li, J.H. Yum, S.J. Moon, A. Herrmann, F. Eickemeyer, N.G. Pschirer, P. Erk, J. Schöneboom, K. Müllen and M. Grätzel, ChemSusChem, 1, 615. (2008).
[11] J.-H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Nüesch, F. De Angelis, M.
Grätzel and M.K. Nazeeruddin, J. Am. Chem. Soc., 129, 10320. (2007).
[12] J.J. Cid, M. García‐Iglesias, J.H. Yum, A. Forneli, J. Albero, E. Martínez‐Ferrero, P. Vázquez, M. Grätzel, M.K. Nazeeruddin and E. Palomares, Chem. Eur. J., 15, 5130. (2009).
[13] D. Vijay, E. Varathan and V. Subramanian, J. Mater. Chem. A, 1, 4358. (2013).
[14] C.-L. Wang, J.-Y. Hu, C.-H. Wu, H.-H. Kuo, Y.-C. Chang, Z.-J. Lan, H.-P. Wu, E.W.-G. Diau and C.-Y. Lin, Energy & Environmental Science, 7, 1392. (2014); bN.V. Krishna, J.V.S. Krishna, S.P. Singh, L. Giribabu, L. Han, I. Bedja, R.K. Gupta and A. Islam, The Journal of Physical Chemistry C, 121, 6464. (2017); cJ. Luo, M. Xu, R. Li, K.-W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi and P. Wang, Journal of the American Chemical Society, 136, 265. (2014); dY. Lu, H. Song, X. Li, H. Ågren, Q. Liu, J. Zhang, X. Zhang and Y. Xie, ACS applied materials & interfaces, 11, 5046. (2019); eK. Zeng, Y. Lu, W. Tang, S. Zhao, Q. Liu, W. Zhu, H. Tian and Y. Xie, Chemical science, 10, 2186. (2019); fK. Zeng, W. Tang, C. Li, Y. Chen, S. Zhao, Q. Liu and Y. Xie, Journal of Materials Chemistry A, 7, 20854. (2019); gY. Lu, Q. Liu, J. Luo, B. Wang, T. Feng, X. Zhou, X. Liu and Y. Xie, ChemSusChem, 12, 2802. (2019).
[15] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin and M. Grätzel, science, 334, 629. (2011).
[16] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin and M. Grätzel, Nature chemistry, 6, 242. (2014).
[17] S.J. Lind, K.C. Gordon, S. Gambhir and D.L. Officer, Physical Chemistry Chemical Physics, 11, 5598. (2009).
[18] X. Lu, L. Feng, T. Akasaka and S. Nagase, Chemical Society Reviews, 41, 7723. (2012); bM.N. Chaur, F. Melin, A.L. Ortiz and L. Echegoyen, Angewandte Chemie International Edition, 48, 7514. (2009); cD. Bethune, R. Johnson, J. Salem, M. De Vries and C. Yannoni,
Nature, 366, 123. (1993); dT. Hirata, R. Hatakeyama, T. Mieno and N. Sato, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14, 615. (1996).
[19] J. Cioslowski and E.D. Fleischmann, The Journal of chemical physics, 94, 3730. (1991).
[20] M. Pavanello, A.F. Jalbout, B. Trzaskowski and L. Adamowicz, Chemical physics letters, 442, 339. (2007); bH. Malani and D. Zhang, The Journal of Physical Chemistry A, 117, 3521. (2013).
[21] S. Aoyagi, E. Nishibori, H. Sawa, K. Sugimoto, M. Takata, Y. Miyata, R. Kitaura, H. Shinohara, H. Okada and T. Sakai, Nature chemistry, 2, 678. (2010); bS. Aoyagi, Y. Sado, E. Nishibori, H. Sawa, H. Okada, H. Tobita, Y. Kasama, R. Kitaura and H. Shinohara, Angewandte Chemie, 124, 3433. (2012); cS. Fukuzumi, K. Ohkubo, Y. Kawashima, D.S. Kim, J.S. Park, A. Jana, V.M. Lynch, D. Kim and J.L. Sessler, Journal of the American Chemical Society, 133, 15938. (2011); dK. Ohkubo, Y. Kawashima and S. Fukuzumi, Chemical Communications, 48, 4314. (2012); eY. Kawashima, K. Ohkubo and S. Fukuzumi, The Journal of Physical Chemistry A, 116, 8942. (2012).
[22] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, Journal of Physics: Condensed Matter, 14, 2745. (2002).
[23] J.P. Perdew, Physical Review B, 33, 8822. (1986).
[24] N. Troullier and J.L. Martins, Physical review B, 43, 1993. (1991).
[25] W.P. Anderson, T.R. Cundari, R.S. Drago and M.C. Zerner, Inorganic Chemistry, 29, 1. (1990); bA.D. Becke, Physical review A, 38, 3098. (1988); cJ.P. Perdew, K. Burke and M. Ernzerhof, Physical review letters, 77, 3865. (1996); dF. Neese, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 73. (2012).
[26] J.-F. Pan, Z.-K. Chen, S.-J. Chua and W. Huang, The Journal of Physical Chemistry A, 105, 8775. (2001).
[27] A.R. Allouche, Journal of computational chemistry, 32, 174. (2011).
[28] M. Rezvani, M.D. Ganji, S. Jameh-Bozorghi and A. Niazi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 194, 57. (2018).
[29] R.S. Mulliken, The Journal of Chemical Physics, 23, 1833. (1955); bF.M. Bickelhaupt, N.J. van Eikema Hommes, C. Fonseca Guerra and E.J. Baerends, Organometallics, 15, 2923. (1996).
[30] F.L. Hirshfeld, Theoretica chimica acta, 44, 129. (1977).
[31] C. Fonseca Guerra, J.W. Handgraaf, E.J. Baerends and F.M. Bickelhaupt, Journal of computational chemistry, 25, 189. (2004).
[32] M. Ghahramanpour, S. Jamehbozorgi and M. Rezvani, Adsorpt., 1. (2020); bJ.W. Lauher and J.A. Ibers, Journal of the American Chemical Society, 96, 4447. (1974); cN. Verdal, P.M. Kozlowski and B.S. Hudson, The Journal of Physical Chemistry A, 109, 5724. (2005).
[33] W.P. Anderson, T.R. Cundari and M.C. Zerner, International journal of quantum chemistry, 39, 31. (1991).
[34] Z. Gong and J.B. Lagowski, Journal of Molecular Structure: THEOCHEM, 729, 211. (2005).
[35] A. Irfan and A.G. Al-Sehemi, Journal of molecular modeling, 18, 4893. (2012); bC. Qin and A.E. Clark, Chemical physics letters, 438, 26. (2007); cS. Dheivamalar and K.B. Banu, Heliyon, 5, e02903. (2019).
[36] A. Shalabi, A. El Mahdy, M. Assem, H. Taha and K. Soliman, Journal of nanoparticle research, 16, 2579. (2014).
[37] O.V. de Oliveira and A. da Silva Gonçalves, Computational Chemistry, 2, 51. (2014).
[38] A.K. Srivastava, S.K. Pandey and N. Misra, Materials Chemistry and Physics, 177, 437. (2016).
[39] R.G. Parr and R.G. Pearson, Journal of the American chemical society, 105, 7512. (1983).
[40]A. Mishra and P. Bäuerle, Angewandte Chemie International Edition, 51, 2020. (2012).
[41]H. Alavi, R. Ghiasi, D. Ghazanfari and M.R. Akhgar, Rev Roum Chim, 59, 883. (2014).
[42]J. Martínez, Chemical Physics Letters, 478, 310. (2009); bZ. Kazemi, R. Ghiasi and S.Jamehbozorgi, Journal of Nanoanalysis, 6, 121. (2019).
[43]J.L. Gazquez, A. Cedillo and A. Vela, The Journal of Physical Chemistry A, 111, 1966.(2007).
[44]R. Soto-Rojo, J. Baldenebro-López and D. Glossman-Mitnik, Physical Chemistry ChemicalPhysics, 17, 14122. (2015).