Comparison of Doped Combination Zirconium-tungsten, Zirconium- molybdenum and Molybdenum-tungsten on Single-wall Vanadium Oxide Nanotube in Hydrogen Gas Adsorption

Document Type: Research Paper

Authors

1 Department of Chemistry, College of chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, College of chemistry , East Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of Chemistry, College of chemistry, Shahr-E-Rey Branch, Islamic Azad University , Tehran, Iran

Abstract

In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and zirconium-tungsten doped vanadium oxide nanotub. At 300 K and at different pressures, the amount of hydrogen gas absorption inside and outside the doped nanotubes has been investigated. The results show the maximum adsorption capacity in 50MPa. Also, by comparing the obtained data and absorption isotherms, was determined absorption of hydrogen gas in vanadium oxide nanotube doped with zirconium molybdenum was better than the other two nanotubes.

Keywords


[1] Maja Remskar, Adv. Mater. 2004, 16-17

[2] Advanced Nanomaterials- Synthesis, Properties, and Applications- Sabu Thomas, Nandakumar Kalarikkal, A. Manuel Stephan and B. Ranecsh, 2014.

[3] Zakharova, G. S., Volkov, V. L., Ivanovskaya, V. V., and Ivanovskii, A. L., Nanotrubki rodstvennye nanostruktury oksidov metallov (Metal oxide Nanotubes and Related Nanostructures), Yekaterinburg: Ural Division of the Russian Academy of sciences, 2005 [in Russian].

[4] Liu, J., Wang, X., Peng, Q., and Li, Y., Vanadium pentoxide Nanobelts. Highly Selective and Stable Ethanol Sensor Materials, Adv. Mater., 2005, Vol. 17, no. 6. Pp. 764-767

[5] chandrappa, G. T., Steunou, N., Cassaignon, S., Bauvais, C., and Livage, J., Hydrothermal Synthesis of Vanadium oxide Nanotubes from V

2O5 Gels, Catal. Today, 2003, Vol. 78, no. 1. Pp. 85-89

[6] Wang, Y. and Cao, G., Synthesis and Enhanced Intercalation properties of Nanostructured Vanadium oxides, Chem. Mater., 2006, Vol. 18, no. 12, pp 2787-2804

[7] Grigorieva. A. V, Tarasov. A. B, Goodilin. E. A, Volkov. V. V, and Tretyakov. Yu. D, Synthesis, Structure, and properties of Vanadium pentoxide Nanotubes, Fizikal khimiya stekla, 2007, Vol 33, No. 3,PP. 232-236

[8] Mai, L. Q.; Chen, W.; Xu, Q.; Peng, J. F; Zhu, Q. Y. Mo doped vanadium oxide nanotubes; microstructure and electrochemistry. Chem. Phys. Lett. 2003, 382, 307-312

[9] Jiao, L. F.; Yuan, H. T.; Si, Y. C.; Wang, Y. J.; Wang, Y. M. Synthesis of Cu

0.1- doped Vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batterias. Electrochem. Commun. 2006, 8, 1041-1044 International Journal of

[10] Li, F.; Wang, X.; Shao, C.; Tan, R.; Liu, Y. W doped vanadium oxide nanotubes: Synthesis and characterization. Mater. Lett. 2007, 61, 1328- 1332.

[11] Rouhani. R, Aghabozorg. H. R, Asadi Asadabad. M, Synthesis and Reactivity in Inorganic, Metal- organic, and Nano- Metalchemistry, Taylor & Francis Group, 2011,

[12] L. Schlapbach, A. Zuttel, Nature, 2001, 414, 353.

[13] A. Zu¨ ttel, Materials Today 6 ,2003, 24.

[14]Zhang M., Y. Bando & K. Wada, 2001. J. Mater. Res. 16, 1408.

[15] R. Strobel, L. Jorisson, T. Schleirmann, V. Trapp, W. Schutz, K. Bohmhammel, G. Woif, Garche, J. Power Sources, 1999, 84, 221.

[16] Chen X., X. Sun & Y. Li, 2002. Inorg. Chem. 41, 4524.

[17] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. B. 77,1996,3865– 3868.

[18] Q. Wang, Y. Liu, and J. Zhao, “Theoretical study on the encapsulation of Pd 3 -based transition metal clusters inside boron nitride nanotubes,” pp. 1143–1151, 2013.

[19] Satishkumar B.C., A. Govindaraj, M. Nath & C.N. Rao, 2000. J. Mater. Chem. 10, 2115.;

[20] R. Strobel, L. Jorisson, T. Schleirmann, V. Trapp, W. Schutz, K. Bohmhammel, G. Woif, Garche, J. Power Sources, 84(1999)221.

[21] Chen X., X. Sun & Y. Li, Inorg. Chem. 41(2002) 4524.

[22] V. E. Henrich and P. A. Cox, T he Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994.

[23] Sun D., Kwon C. W., Baure G., et al., The relationship between nanoscale structure and electrochemical properties of vanadium oxide nanorolls. Adv . Funct . Mater . 14( 2004 )1197.

[24] Krumeich F., H.J. Muhr, M. Niederberger, F. Bieri, B. Schnyder & R. Nesper, J. Am. Chem. Soc. 121(1999)8324.

[25] A.M. Rashidi , A. Nouralishahi , A.A. Khodadadi , Y. Mortazavi , A. Karimi , K. Kashefi, Modification of single wall carbon nanotubes (SWNT) for hydrogen storage, International journal of hydrogen energy, 35( 2010)9489-9495.

[26] Minglang Yu, Xueqin Liub, Yuan Wang, Youbin Zheng, Jiawang Zhang, Mingyang Li , Wei Lan, Qing Sua, Gas sensing properties of p-type semiconducting vanadium oxide nanotubes, Applied Surface Science 258 (2012) 9554– 9558.

[27] M. Niederberger, H.-J. Muhr, F. Krumeich, F. Bieri, D. Günther and R. Nesper, Chem. Mater.12( 2000 ) 1995.

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., 21, 6, 1087, 1953