An empirical technique for prediction of nucleation mechanism and interfacial tension of potassium chloride nanoparticles

Document Type: Research Paper

Authors

1 Bushehr Petrochemical Company, Gas sweetening plant, Asaluyeh,Iran

2 Department of chemical engineering, Tarbiat Modares University,Tehran,Iran

Abstract

Prediction of the nucleation mechanism is one of the most critical factors in the design of a crystallization system. Information about the nucleation mechanism helps to control the size, shape, size distribution, and purity of the produced crystals. When the crystallization method is used for producing nanoparticles, the nucleation mechanism should be predicted. In this study, an empirical correlation based on the induction time, classical nucleation theory, and Kashchive model is used to determine the nucleation mechanism. Nanoparticles are produced in the presence of Cetyl Trimethyl Ammonium Bromide (CTAB) and the effect of CTAB on the induction time and the interfacial tensions of potassium chloride nanoparticles have been investigated. The obtained results demonstrated that the nucleation mechanism of potassium chloride nanoparticles is heterogeneous. This method is simple and can be applied at ambient conditions for synthesis other mineral nanoparticles. It can also be applied to study the induction time with high accuracy.

Keywords


 [1]      E. L. Wolf, Nanophysics and nanotechnology: An introduction to modern concepts in nanoscience. John Wiley & Sons, (2008).

[2]       A. Myerson, Handbook of industrial crystallization. Butterworth-Heinemann, (2002).

[3]       J. W. Mullin, Crystallization. Butterworth-Heinemann, (2001).

[4]       J. Sohnel, O. Mullin, Colloids. Surf. A., 123, 43 (1998).

[5]       A. E. Nielsen, O. Söhnel, J. Cryst. Growth., 11, 242 (1971).

[6]       C. Y. Tai, W. C. Chien, Chem. Eng. Sci., 58, 3233 (2003).

[7]       S. Ghader, M. Manteghian, M. Kokabi, R. S. Mamoory, Chem. eng. technol., 30, 1129 (2003).

[8]       C. Xu, D. Liu, W. Chen, J. Cryst. Growth., 310, 4138 (2008).

[9]       W. J. HAN Jiabin, Chinese. J. Chem. Eng., 18, 767 (2010).

[10]     M. C. van der Leeden, D. Kashchiev, G. M. van Rosmalen, J. Cryst. Growth., 130, 221 (1993).

[11]     D. Kashchiev, A. Firoozabadi, J. Cryst. Growth., 250, 499 (2003).

[12]     A. Mersmann, Dry. Technol., 13, 1037, (1995).

[13]     J. Sohnel, O and Mullin, J. Cryst. Growth., 44,377 (1978).

[14]     A. Mersmann, Chem. Eng. Process., 38, 345 (1999).

[15]     A. J. Alexander, P. J. Camp, Cryst. Growth. Des., 9. 958 (2008).

[16]     P. Bennema, O. Söhnel, J. cryst. Growth., 102, 547 (1990).

[17]     R. J. Farn, Chemistry and technology of surfactants. John Wiley & Sons (2008).