Evaluating Commercial Macroporous Resin (D201) for Uranium Uptake in Static and Dynamic Fixed Bed Ion Exchange Column

Document Type: Research Paper

Author

Nuclear Material Authority, 530 p.o Box Maadi. Cairo, (EGYPT)

Abstract

As part of the development of equipment and innovative technology for the process flow-sheet, a study on the selection of good resin for uranium uptake is ongoing. Both static and dynamic column equilibrium testing upon synthetic and Gattar pregnant leach solutions (PLS) were carried out to estimate the change of total capacity and breakthrough capacity of the commercial macroporous anion exchange resin (D201). Applying the static and dynamic methods upon synthetic uranium sulphate solution, the maximum adsorption capacity of uranium (VI) upon D201 resin was evaluated to be 105 and 101.2mgU/g respectively. The macroporous D201 resin has been found to agree with the Langmuir isotherm. Finally, the optimized factors have been carried out for uranium recovery from Gattar pregnant leach solution, under the optimized working conditions, about 93 and 90 % of the resin theoretical capacity was realized using both static and dynamic techniques respectively.

Keywords


      [1]       E. Schnug, B. G. Lottermoser, Environ. Sci. Technol., 47, 2433 (2013).

      [2]       I. Hore-Lacy, Colloids. Interfaces., 3, 61 (2019).

      [3]       S. A. Wahab, A. Rezik, A. H. A. Abu Khoziem, E. Khalid, W. Abdellah, J. Environ. Integr., 4, 19 (2019).

      [4]       D. James, G. Venkateswaran, T. P. Rao, Microporous Mesoporous Mater., 119, 165 (2009).

      [5]       B. M. Atia, M. A. Gado, M. F. Cheira, J. Environ. Integr., 3, 39 (2018).

      [6]       Z. Zhu, Y. Pranolo, C. Y. Cheng, Miner. Eng., 89, 77 (2016).

      [7]       A. F. T. El-Din, E. A. Elshehy, M. E. El-Khouly, J. Environ. Chem. Eng., 6, 5845 (2018).

      [8]       A. Alqadami, M. Naushad, Z. A. Alothman, A. A. Ghfar, ACS Appl. Mater. Interfaces., 9, 36026 (2017).

      [9]       Pugazhendhi, G. M. Boovaragamoorthy, K. Ranganathan, M. Naushad, T. Kaliannan, J. Clean. Prod., 174, 1234 (2018).

     [10]     M. Naushad, Z. A. ALOthman, Desalin. Water Treat., 53, 2158 (2015).

     [11]     M. Naushad, Chem. Eng. J., 235, 100 (2014).

     [12]     S. Mohamed, K. Hussein, Hydrometallurgy., 74, 85 (2004).

     [13]     U. V. Trivedi, S. K. Menon, Y. K. Agrawal, React. Func. Polym., 50, 205 (2002).

     [14]     L. Whitty-Léveillé, N. Reynier, D. Larivière, Hydrometallurgy., 187, 196 (2018).

     [15]     D. W. Boydell, "Continuous Ion Exchange for Uranium Recovery": An Assessment of the Achievements over the Past Five Years, in Hydrometallurgy '81, Society of Chemical Industry, London (1981).

     [16]     Z. Yong, X. Gefu, Ion exchange and extraction of uranium, nuclear energy publisher, p. 156 (1991).

     [17]     H. Guettaf, A. Becis, K. Ferhat, K. Hanou, D. Bouchiha, K. Yakoubi, F. Ferrad, Phys. Procedia., 2, 765(2009).

     [18]     Y. M. YKhawassek, Nucl. Sci. J., 3, 169 (2014).

     [19]     M. Abdel Aal, Purification of Uranium Concentrate from Abo- Rushied Ore Material with Emphasize Upon Ion Exchange Technique, South Eastern Desert, P.h. D. thesis, Ain Shams University, Cairo, Egypt (2014).

     [20]     K. Mirjial, M. Roshani, J. Hydrometallurgy., 85, 103 (2007).

     [21]     A. Mohasseb, Int. J. New. Chem., 6, 215 (2019).

     [22]     C. D. Barnes, R. A. Da Silva Neves, M. Streat, J. appl. Chem. Biotechnol., 24, 787 (1974).

     [23]     S. V. Mattigod, E. A. Cordova, E. C. Golovich, R. M. Smith, D. M. Wellman, Uranium Adsorption on Ion-Exchange Resins–Batch Testing, Pacific Northwest National Laboratory Richland, Washington (2010).

     [24]     J. C. P. Chen, L Wang, Chemosphere., 54, 397 (2004).

     [25]     M. E. Sheta; Extraction of Uranium from Sulfuric acid Solution, Ninth Conference, Arab Atomic Energy Agency, Sudan, (2012).

     [26]     Internal Report Series Two-stages counter-current vat leaching process of low grade  Gattar mineralization (RUN-16 and 17), August 2015 Nuclear Materials Authority, Egypt.

     [27]     A. Massoud, Ahmed M., Masoud W. M, Youssef, Radioanal. Nucl. Chem., 322, 1065 (2019).

     [28]     M. Asif, M. Imran, Int. J. New. Chem., 7, 60 (2020).

     [29]     M. F. Cheira, A. M. El-Didamony, K. F. Mahmoud, B. M. Atia, IOSR-JAC., 7, 32 (2014).

     [30]     R. A. Gazala, M. S. Nagar. J. Anal. Bioanal. Tech., 8, 392 (2017).

     [31]     A. Tag El-Dina, E. A. Elshehy, M. E. El-Khouly, A. Atia, A. Microporous Mesoporous Mater., 265, 211 (2018).

     [32]     M. Naushad, T. Ahamad, B. M. Al-Maswari, A. A. Alqadami, S. M. AlShehri, Chem. Eng. J., 330, 1351 (2017).

     [33]     M. S. Nagar, Chem. Technol. Indian. J., 11, 27 (2016).

     [34]     Z. Sarikhani, M. Manoochehri, Int. J. New. Chem., 7, 30 (2020).

     [35]     L. Li, D. Ding, N. Hu, P. Fu, X. Xin, Y. Wang, J. Radioanal Nucl. Chem., 299, 681 (2014).

     [36]     E. Valdman, L. Erijman, F. L. P. Pessoa, S. G. F. Leite, Process. Biochem., 36, 869 (2001).

     [37]     S. Yesim, Y. Aktay, Process. Biochem., 36, 1187 (2001).

     [38]     R. C. Merritt, The extractive metallurgy of uranium, Colorado school of mines research institute, Johnson publishing Co., Boulder, Co 576 (1971).