Investigation the Kinetics of CO2 Hydrate Formation in the Water System + CTAB + TBAF + ZnO

Document Type: Research Paper


Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran


In this study, the kinetics of gas hydrate formation in the presence of tetra-n-butyl ammonium fluoride (TBAF) and cetyl trimethyl ammonium bromide surface active ingredient (CTAB) with zinc nano oxide (ZnO) are investigated and the most important kinetic parameters of hydrate formation such as their induction time and storage capacity were measured. The kinetic experiments were carried out in a constant volume temperature method in a high pressure reactor. The storage capacity of carbon dioxide hydrate in water in the presence of ZnO and surfactants at different temperatures, pressures and concentrations of TBAF and CTAB additives was calculated and measured using time induction measurements. The results show that with increasing pressure and decreasing temperature, the storage capacity of CO2 in hydrate increases. Finally, statistical analysis of the parameters affecting the induction time of hydrate formation showed that zinc oxide can reduce the induction time of hydrate formation compared to other additives.


[1] D. Lusk, M. Gupta, K. Boinapally, Y. Cao, Hydrocarb Eng., 13, 115, (2008).

[2] M. Mota-Martinez, S. Samdani, A. Berrouk, M.C. Kroon, C. Peters, Ind. Eng. Chem., 53, 20032, (2014).

[3] P.C. Okafor, C.B. Liu, Y.J. Zhu, Y.G. Zheng, Ind Engng and Chem Res., 50, 7273, (2011).

[4] S.O. Yang, Flu Phase Equilibr., 175, 75, (2000).

[5] I. Ali, W.A. Wani, Synth React Tnorg M Journal, 43, 1162, (2013).

[6] H. Roosta, Scient Iranica C., 21, 753, (2014).

[7] A. Erxleben, Inorg. Chim. Acta., 472, 40, (2018).

[8] A. Bozorgian, Z. Arab Aboosadi, A. Mohammadi. B. Honarvar, A. Azimi,Prog in Chem and Biochem Resea, 3(1), 31, (2020).

 [9] J. Mashhadizadeh, A. Bozorgian, A. Azimi, Eurasian Chem Commun., 2(2), 536, (2020).

[10] Z. Sarikhani, M. Manoochehri, Int J of New Chem., 7(1), 30, (2020).

[11] A. Samimi, S. Zarinabadi, A. Shahbazi Kootenaei, A. Azimi, M. Mirzaei, Advan J of Chem-Section A., 3(2), 165, (2020).

[12] A. Bozorgian, Z. Arab Aboosadi, A. Mohammadi, B. Honarvar, & A. Azimi, Eurasian Chem Comm., 2(3), 420, (2020).

[13] S. Someya, Int. J. Heat Mass Transfer., 48, 2503, (2005).

[14] S. Bergeron, Fluid Phase Equilibria., 276, 150, (2009).

[15] D. Iribarren, F. Petrakopoulou, J. Dufour, Energy., 50, 477, (2013).

[16] M Nabati, V Bodaghi-Namileh, Int J of New Chem., 6(4), 254, (2019).

[17] T. Bedassa; M. Desalegne, Int J of New Chem., 7(1), 47, (2020).

[18] M. Noormohammadi; M. Barmala, Int J of New Chem., 6(4), 289, (2019).

[19] A.H. Tarighaleslami, A. Bozorgian, B. Raei, The 1st Territorial Chemistry and Industry Symposium, Lecture number: E-1097, Damghan, Iran (in Persian), (2009).

[20] A. Mohasseb, Int Journal of New Chem., 6(4), 215, (2019).

[21] S. Kumer, M. Ebrahimikia, M. Yari, Int J of New Chem, 7(1), 74, (2020).

[22]  A. Samimi, K. Kavousi, S. Zarinabadi, A. Bozorgian, Prog in Chem and Biochem Resea., 2(1), 7, (2020).

[23] A. Bozorgian, M. Ghazinezhad, J Biochem Tech., Special Issue (2), 149, (2018).

[24] A. Samimi, S. Zarinabadi, A. Shahbazi Kootenaei, A. Azimi, M. Mirzaei, Chem Methods., 4 (1), 852, (2020).

[25] N. Farhami, A. Bozorgian, Int. Conf. on Chem. and Chem. Process IPCBEE, Vol. 10 (2011).