Synthesis and Theoretical Studies of [2-amino-3-(ethoxycarbonyl)-1,4-dihydro-1-phenyl-4-pyridinyl] Ferrocene Derivatives

Document Type: Research Paper

Authors

1 Department of Chemistry, Zanjan Branch, Islamic Azad University, P. O. Box 49195-467, Zanjan, Iran

2 Department of Chemistry, East,Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this study, syntheses of [2-amino-3-(ethoxycarbonyl)-1,4-dihydro-1-phenyl-4-pyridinyl]ferrocene derivatives from reaction of ferrocenecarboxaldehyde, ethyl cyanoacetate, aniline, and acetylenic esters in the presence of piperidine were reported in good yields. The reaction proceeded smoothly and cleanly under mild reaction conditions and no side reactions were observed. The structures of the products were confirmed by IR, 1H NMR, 13C NMR, mass spectroscopy, and elemental analysis. Then, structure, electronic and spectroscopic properties of the synthesized molecules were computed at the CAM-B3LYP/jorge-DZP (H,C,N,O) and Def2-TZVPPD (Fe) level of theory. First hyperpolarizability value were calculated to describe the nonlinear optical (NLO) properties of these molecules. The HOMO-LUMO study to find the band gap of the prepared molecules was extended to calculate global hardness, chemical potential and global electrophilicity for the investigation of the chemical behavior of the compounds. The energies of iron d-orbitals and formal electron configurations of iron atom were calculated by natural bond orbital (NBO) analysis.

Keywords


[1] J. Sun, E.-Y. Xia, Q. Wu, C.-G. Yan, Org. Lett. 12, 3678 (2010).
[2] J. Sun, E.-Y. Xia, Q. Wu, C.-G. Yan, ACS Comb. Sci. 13, 421 (2011).
[3] M. Hadjebi, M. S. Hashtroudi, H. R. Bijanzadeh, S. Balalaie, Helv. Chim. Acta, 94,
382 (2011).
[4] E. Yamuna, M. Zeller, K. J. R. Prasad, Tetrahedron Lett. 52, 6805 (2011).
[5] S. Shabalala, S. Maddila, W. E. V. Zyl, S. B. Jonnalagadda, Catal. Commun. 79, 21 (2016).
[6] S. E. Kiruthika, N. V. Lakshmi, B. R. Banu, P. T. Perumal, Tetrahedron Lett. 52, 6508 (2011).
[7] S. Pal, M. N. Khan, L. H. Choudhury, J. Heterocyclic Chem. 51, E156 (2014).
[8] S. Pal, L. H. Choudhury, T. Parvin, Synth. Commun. 43, 986 (2013).
[9] R. Ramesh, R. Madhesh, J. G. Malecki, A. Lalitha, Chemistry Select. 1, 5196 (2016).
[10] S. E. Kiruthika, P. T. Perumal, RSC Adv. 4, 3758 (2014).
[11] J. Safari, S. H. Banitaba, S. D. Khalili, J. Mol. Catal. A: Chem. 335, 46 (2011).
[12] A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Tetrahedron Lett. 50, 5248 (2009).
[13] H. Adibi, H. A. Samimi, M. Beygzadeh, Catal. Commun. 8, 2119 (2007).
[14] K. Purandhar, V. Jyothi, P. P. Reddy, M. A. Chari, K. Mukkantid, J. Heterocycl. Chem. 49, 232 (2012).
[15] A. Hilgeroth, Mini Rev. Med. Chem. 2, 235 (2002).
[16] R. P. Mason, I. T. Mak, M. W. Trumbore, P. E. Mason, Am. J. Cardiol. 84, 16 (1999).
[17] C. Safak, R. Simsek, Mini Rev. Med. Chem. 6, 747 (2006).
[18] M. G. Pavani, M. Nunez, P. Brigidi, B. Vitali, R. Gambari, Bioorg. Med. Chem. 10, 449 (2002).
[19] S. M. Sondhi, M. Johar, S. Rajvanshi, S. G. Dastidar, R. Shukla, R. Raghubir, J. W. Lown, Aust. J. Chem. 54, 69 (2001).
[20] A. Trivedi, D. Dodiya, B. Dholariya, V. Kataria, V. Bhuva, V. Shah, Chem. Biol. Drug Des. 78, 881 (2011).
[21] C. J. Shishoo, V. S. Shirsath, I. S. Rathod, M. J. Patil, S. S. Bhargava, Arzneimittel- Forsch. 51, 221 (2001).
[22] M. Kawase, A. Shah, H. Gaveriya, N. Motohashi, H. Sakagami, A. Varga, J. Molnar, Bioorg. Med. Chem. 10, 1051 (2002).
[23] M. Ashtary, A. Ramazani, A. R. Kazemizadeh, N. Shajari, N. Fattahi, S. W. Joo, Phosphorus, Sulfur Silicon Relat. Elem. 191, 1402 (2016).
[24] A. R. Kazemizadeh, N. Shajari, R. Shapouri, N. Adibpour, R. T. Mofrad, J. Iran. Chem. Soc. 13, 1349 (2016).
[25] A. R. Kazemizadeh, N. Shajari, R. Shapouri, N. Adibpour, R. Teimuri-Mofrad, P. Dinmohammadi, Appl. Organometal. Chem. 30, 148 (2016).
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman,V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida,T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Jr.; Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009
[27] D. J. Feller, Comput. Chem. 17, 1571 (1996).
[28] K. L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem., Inf. Model. 47, 1045 (2007).
[29] G. G. Camiletti, S. F. Machado, F. E. Jorge, J. Comput. Chem. 29, 2434 (2008).
[30] A. C. Neto, E. P. Muniz, R. Centoducatte, F. E. Jorge, J. Mol. Struct:THEOCHEM , 718, 219 (2005).
[31] T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 393, 51 (2004).
[32] M. Akkurt,T. Holeckek, H. Soylu, Z. Kristallogr. 181, 161 (1987).
[33] R. G. Pearson, Chemical Hardness. Wiley-VCH: Oxford: 1997.
[34] R G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press: New York: 1989.
[35] R. G. Parr, L. V. Szentpaly, S. J. Liu, J. Am. Chem. Soc. 121, 1922 (1999).