An Overview on the Carbon Utilization Technologies with an approach to the negative emission construction material

Document Type : Review


1 Department of energy engineering and physics, Amirkabir university of technology (Tehran polytechnic), 424 Hafez Avenue, PO. Box 15875-4413, Tehran, Iran

2 Qazvin Islamic Azad University, Qazvin, Iran


As an additional strategy to reduce carbon dioxide in carbon capture and storage, carbon sequestration, and utilization (CCU) is of great importance worldwide. Potential applications of the CCU range from using carbon dioxide in greenhouses and agriculture to converting carbon dioxide into fuels, chemicals, polymers, and building materials. CO2 has been used for decades by advanced technologies in various industrial processes, including increased CO2 recovery, food and beverage industries, urea production, water treatment, and firefighters’ production and chillers. There are also many new technologies for using CO2 in various stages of development and marketing. These technologies have the potential to create opportunities to provide emissions in power plants and other industrial sectors by replacing some raw materials for fossil fuels, increasing the efficiency and use of renewable energy, and generating revenue through the production of end-use products. This paper examines techniques for using carbon dioxide that convert carbon dioxide into commercial products through chemical and biochemical reactions with a focus on current technologies for broad supply or marketing. Carbon dioxide technologies are grouped according to technological conversion methods, such as electrochemical, photocatalysis and optical light, catalysis, biological processes (using microbes and enzymes), joint polymerization, and mineralization. In this paper, recent developments and the status of CO2 technologies have been examined, and the environmental impacts of CCUs are also discussed in terms of life cycle analysis.


[1].    XPRIZE. Transforming CO2 into Valuable Products., Available online in
[2].    G. Benjaminsson, J. Benjaminsson, R.B. Rudberg, SGC report., Malmö, Sweden (2013).
[3].    I. Fechete, J.C. Vedrine, Molecules., (2015).
[4].    H.L. Tuller, Materials for Renewable and Sustainable Energy. 6, 3 (2017).
[5].    M. Ólafsson, Personal communication., Reykjavik, Iceland (2018).
[6].    M. Jendrischik, SETIS Magazine., 11, 19 (2016).
[7].    Sunfire GmbH, Powercore—the Efficient Energy Converter., available online in
[8].    A. Sherrard, Sunfire to Build 8000 Tonne-per-annum Power-to liquid Facility in Norway., available online in
[9].    S. Rieke, the 2015 E-MRS Spring Meeting., Lille, France, 11 (2015).
[10].  HZI, Hitachi Zosen Corporation and Hitachi Zosen Inova to Build First Joint Power-to-gas Plant., available online in
[11].  M. Andersen, Hydrogen from ‘Reverse Fuel’ Cells., available online in
[12].  J. Ren, F.F. Li, J. Lau, Nano Lett., 15, 6142 (2015).
[13].  J. Ren, F.F. Li, M. Johnson, J CO2 Util., 18, 335 (2017).
[14].  M. Johnson, J. Ren, M. Lefler, Materials Today En., 5, 230 (2017).
[15].  J. Lau, G. Dey, S. Licht, En Convers Manag., 122, 400 (2016).
[16].  A. Martino, Sandia National Laboratories., USDOE, available online in
[17].  A. Martino, Sandia National Laboratories., US DOE, available online in
[18].  J.E. Miller, M.D. Allendorf, A. Ambrosini, Final report, SAND2012-0307., Sandia National Laboratories, US DOE (2012).
[19].  CRI, CRI Technology Overview., Available online in (15 October 2018, date last accessed).
[20].  B. Stefansson, 2015 European Methanol Policy Forum., Brussels, Belgium, 13 (2015).
[21].  Carbon Engineering. Press release: CE demonstrates air to fuels., available online in
[22].  Greyrock., available online in
[23].  H. Fujita, Personal communication, Asahi Kasei Corporation., Tokyo, Japan (2018).
[24].  S. Fukuoka, Personal communication, Fukuoka-Shin Professional Engineer Office, Kurashiki-City, Japan (2018).
[25].   Convestro, Cardyon® ‒ Brighter Use of CO2., Available online in
[26].  Novomer, What’s New at Novomer., available online in
[27].  Tianguan Group, 10 万吨/年二氧化碳全降解塑料项目简介., available online in
[28].  Zkjlchem, Company Profile., available online in
[29].  F.H. Qin, 降解塑料化解白色垃圾白色污染催生绿色革命’.,  available online in
[30].  Newlight Technologies, Technology/ AirCarbon™/News., available online in
[31].  Econic Technologies, Press release: UK’s first carbon capture utilisation demonstration plant opens its doors., available online in
[32].  P. Broadwith, Catalytic Carbon Dioxide Convertors., available online in
[33].  Econic Technologies, Brochure, Macclesfield, UK, Econic Technologies (2018).
[34].  S. Monkman, M. MacDonald, R.D. Hooton, Cement Concrete Comp., 74, 218 (2016).
[35].  N. De Cristofaro, A. Opfermann, CryoGas International. 53, 28 (2015).
[36].  Carbon8 Aggregates., available online in
[37].   Carbon Upcycling, Turning Carbon Dioxide into CO2NCRETE™., available online in
[38].  C. Hills, SETIS Magazine., 11, 29 (2016).
[39].  Carbstone Innovation NV., available online in
[40].  Carbicrete., available online in
[41].  H. Clancy, The Quest to Create Carbon-negative Concrete., available online in
[42].  Carbonfree Chemicals. Capture Harmful Pollutants with SkyMine., available online in
[43].  R.M. Cuéllar-Franca, A. Azapagic, J CO2 Util., 9, 82 (2015).
[44].  N. von der Assen, A. Bardow, Green Chem., 16, 3272 (2014).
[45].  S. Monkman, M. MacDonald, J Clean Prod., 167, 365 (2017).
[46].  N. Norouzi, G. Kalantari, S. Talebi, Bio Res in App Chem., 10, 5780 (2020).
[47].  N. Norouzi, S. Talebi, M. Fabi, H. Khajehpour, Bio Res in App Chem., 10, 6088 (2020).
[48].  N. Norouzi, S. Talebi, Chem. Rev. Lett., 3, 38 (2020).
[49].  N. Norouzi, S. Talebi, A. Shahbazi, Chem. Rev. Lett., 3, 65 (2020).
[50].  S. Pirsa, F. Mohtarami, S. Kalantari, Chem. Rev. Lett., 3, 98 (2020).
[51].  V. Amani, Int J New Chem., 7, 101 (2020).
[52].  K. Peer Mohamed, A. Maajitha Begam, P KandasamyPrabakar, C. Christobher, Int J New Chem., 7, 125 (2020).
[53].  M. Ashrafi, B. Gholamveisi, B. Kazemi Haki, H. Kazemi Hakki, Int J New Chem., 7, 137 (2020).