ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

1 Department of chemistry, Qom university of technology, Qom, Iran

2 Qom university of technology

Abstract

This study reports a facile, fast, eco-friendly, and one-pot approach for the synthesis of copper oxide nanoparticles (CuO NPs) using safe Pistacia vera peel extract. The extract is used as a stabilizing and reducing agent. Different analytical technique including FT-IR spectroscopy for determination of the Pistacia vera peel extract functional groups in the reduction and capping process of copper oxide NPs, UV–Vis absorption spectroscopy for affirmation of CuO presence, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray diffraction (XRD) was used in the present study. In these analyses, a sharp peak at 283 nm in UV-vis tests, and a specific Ft-IR peak at 601.59 cm-1 prove that this synthesis was completed using green chemistry principles. In addition, the average size of the biosynthesized nanoparticles was 32.97 nanometers according to the Scherrer equation. CuO NPs antibacterial activity was examined against Bacillus subtilis and Streptococcus pyogenes wherein CuO NPs, exhibited remarkable antibacterial activity with minimum bactericidal concentrations (MBCs) within the range of 125-1000 𝜇g/mL. Additionally, it showed better performance than classical antibacterials in the zone of inhibition assay against Bacillus subtilis. Generally, this study demonstrated that copper nanoparticles synthesized with plant mediators are completely competitive with other chemicals, such as drugs.

Keywords

Main Subjects

  1. [1]. Whitesides GM., Small., 1 (2005) https://doi.org/10.1002/smll.200400130
  2. [2]. Nasrollahzadeh, SM. Sajadi, M. Sajjadi, Z. Issaabadi., Interface Sci. Technol., 28 (2019) https://doi.org/10.1016/B978-0-12-813586-0.00001-8
  3. [3]. Maynard, RJ. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, MA. Philbert, J. Ryan, A. Seaton, V. Stone, SS. Tinkle., Nature., 444: 267 (2006) https://doi.org/10.1038/444267a
  4. [4]. Gahlawat, AR. Choudhury., RSC advances., 9: 12944 (2019) https://doi.org/10.1039/C8RA10483B
  5. [5]. Ahmed, M. Ahmad, BL. Swami, S. Ikram., J. Adv. Res., 1: 17 (2016) https://doi.org/10.1016/j.jare.2015.02.007
  6. [6]. Xing., J. Phys. Chem. B., 16: 19255 (2004) https://doi.org/10.1021/jp046697i
  7. [7]. Patsula, L. Kosinová, M. Lovrić, L. Ferhatovic Hamzić, M. Rabyk, R. Konefal, A. Paruzel, M. Šlouf, V. Herynek, S. Gajović, D. Horák. ACS Appl. Mater. Interfaces., 8: 7238 (2016) https://doi.org/10.1021/acsami.5b12720
  8. [8]. Marquardt, C. Vollmer, R. Thomann, P. Steurer, R. Mülhaupt, E. Redel, C. Janiak., Carbon., 49: 1326 (2011) https://doi.org/10.1016/j.carbon.2010.09.066
  9. [9]. Mohazzab, B. Jaleh, O. Kakuee, A. Fattah-Alhosseini., Appl. Surf. Sci., 478: 623 (2019) https://doi.org/10.1016/j.apsusc.2019.01.259
  10. [10]. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana., JTUMED., 9: 7 (2015) https://doi.org/10.1016/j.jtusci.2014.04.006
  11. [11]. Iravani., Green Chemistry, 13 (2011) https://doi.org/10.1039/C1GC15386B
  12. [12]. Virkutyte, RS. Varma., Chem. Science., 2 (2011) https://doi.org/10.1039/C0SC00338G
  13. [13]. Veisi, AR. Faraji, S. Hemmati, A. Gil., Appl. Organomet. Chem., 29: 517 (2015) https://doi.org/10.1002/aoc.3325
  14. [14]. Sadeghi, A. Rostami, SS. Momeni., SAA., 134: 326 (2015) https://doi.org/10.1016/j.saa.2014.05.078
  15. [15]. Panigrahi, S. Kundu, S. Ghosh, S. Nath, T. Pal. J Nanopart Res., 6 (1): 411 (2004) https://doi.org/10.1007/s11051-004-6575-2
  16. [16]. Yin, D. Ma, X. Bao., Chem comm., 46 (2010) https://doi.org/10.1039/B920169F
  17. [17]. Agarwal, SV. Kumar, S. Rajeshkumar., Resource-Efficient Technologies, 3 (4): 406 (2017) https://doi.org/10.1016/j.reffit.2017.03.002
  18. [18]. Vettivel, N. Selvakumar, N. Leema., Materials & Design., 45 (2013) https://doi.org/10.1016/j.matdes.2012.08.056
  19. [19]. Stokes, AJ. Wilson., Math. Proc. Camb. Philos. Soc., 38 (3): 313 (1942) https://doi.org/10.1017/S0305004100021988
  20. [20]. Stoimenov, RL. Klinger, GL. Marchin, KJ. Klabunde., Langmuir., 18 (17): 6679 (2002) https://doi.org/10.1021/la0202374
  21. [21]. Tong, M. Yulong, G. Peng, X. Zirong., Vet. Microbiol., 105 (2): 113 (2005) https://doi.org/10.1016/j.vetmic.2004.11.003
  22. [22]. Lok, CM. Ho, R. Chen, QY. He, WY. Yu, H. Sun, PK. Tam, JF. Chiu, CM. Che., J. Proteome Res., 5 (4): 916 (2006) https://doi.org/10.1021/pr0504079
  23. [23]. Dan, HW. Ni, BF. Xu, J. Xiong, PY. Xiong., Thin solid films., 492 (1-2): 93 (2005) https://doi.org/10.1016/j.tsf.2005.06.100
  24. [24]. Hu, MS. Xia., Appl. Clay Sci., 31 (3-4): 180 (2006) https://doi.org/10.1016/j.clay.2005.10.010
  25. [25]. Raffi, S. Mehrwan, TM. Bhatti, JI. Akhter, A. Hameed, W. Yawar., Ann. Microbiol., 60 (1): 75 (2010) https://doi.org/10.1007/s13213-010-0015-6