ISC, DOAJ, CAS, Google Scholar......

Document Type : Review

Authors

Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Abstract

ABSTRACT

Hydrogels now play a more crucial role than ever thanks to the development of technology. Because of their unique properties, hydrogels can withstand high water and biological fluid concentrations without losing their ability to hold them in their three-dimensional networks. Typically, hydrogels are wet, rubbery, and soft materials. Additionally, they can respond to fluctuations in environmental stimuli. Hydrogels can swell in the solvent or shrink in the state of non-solubility. Moreover, they can even undergo shape volume changes of external stimuli like pH, temperature, light, and electric signals. They are highly regarded as a versatile product and can be used in a variety of medical and industrial settings, including agriculture, the food industry, wound dressing, and implants, because of their hydrophilic structure. In recent years, the development of smart hydrogels that can respond to changes in the environment has been enhanced in a myriad range of applications. This study offers a review of the various ways that hydrogels have been used in two distinct fields, particularly the medical one.

Keywords

Main Subjects

[1] K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, M.M. Yallapu, R. Sadiku, Mater. Sci. Eng. C., 79, 958-971  (2017).
 
[2] S. Sim, A. Figueiras, F. Veiga, Modular hydrogels for drug delivery, (2012).
 
[3] Y. Zhang, C.Y. Won, C.C. Chu, J. polym. sci., A-1 Polym. chem., 37, 4554-4569  (1999).
 
[4] M. Mahinroosta, Z.J. Farsangi, A. Allahverdi, Z. Shakoori, Mater. Today Chem., 8, 42-55 (2018).
 
[5] C.W. Manke, M.C. Williams, Macromolecules, 18, 2045-2051  (1985).
 
[6] A. Li, Development and study of hydrogel-based microvalves for lab-on-a-chip systems, (2012).
 
[7] C. Gong, S. Shi, P. Dong, B. Kan, M. Gou, X. Wang, X. Li, F. Luo, X. Zhao, Y. Wei, Int. J. Pharm., 365, 89-99  (2009).
 
[8] F. Kurşun, N. Işıklan, J. Ind. Eng. Chem., 41, 91-104  (2016).
 
[9] Y.S. Lipatov, Prog. Polym. Sci., 27, 1721-1801  (2002).
 
[10] M. Ghazinezhad, E. Grinyuk, E. Fomina, L. Krul, Preparation of hydrogels via cross-linking of poly (acrylamide-co-2-acrylamido-2-methyl-1-propane sodium sulfonate) with ammonium persulfate, Вестник БГУ. Серия 2: Химия. Биология. География, 14-19 (2015).
 
[11] R. Michalik, I. Wandzik, Polymers., 12, 2425  (2020).
 
[12] M.M. ZOHOURIAN, K. Kabiri, Superabsorbent polymer materials: a review, (2008).
 
[13] V.M. Gun’ko, I.N. Savina, S.V. Mikhalovsky, Gels., 3, 37  (2017).
 
[14] A.H. Bacelar, I.F. Cengiz, J. Silva-Correia, R.A. Sousa, J.M. Oliveira, R.L. Reisa, Handbook of intelligent scaffolds for tissue engineering and regenerative medicine, 2, 327-361  (2017).
 
[15] S. Arabi, Int J New Chem., (2023).
 
[16] A. Patel, K. Mequanint, Hydrogel biomaterials,  Biomedical engineering-frontiers and challenges, IntechOpen (2011).
 
[17] P. Gupta, K. Vermani, S. Garg, Drug discovery today., 7, 569-579  (2002).
 
[18] M.E. Pekdemir, E. Öner, M. Kök, I.N. Qader, Iran. Polym. J., 30, 633-641 (2021).
 
[19] H. Huang, X. Qi, Y. Chen, Z. Wu, Saudi Pharmaceutical Journal., 27, 990-999  (2019).
 
[20] Y. Qiu, K. Park, Adv. Drug Deliv. Rev., 53 321-339  (2001).
 
[21] X.-Z. Zhang, P.J. Lewis, C.-C. Chu, Biomaterials., 26, 3299-3309  (2005).
 
[22] N. Park, J. Kim, Advanced Intelligent Systems., 2, 1900135  (2020).
 
[23] A. Jayakumar, V.K. Jose, J.M. Lee, Small Methods., 4, 1900735  (2020).
 
[24] I.Y. Ma, E.J. Lobb, N.C. Billingham, S.P. Armes, A.L. Lewis, A.W. Lloyd, J. Salvage, Macromolecules., 35, 9306-9314  (2002).
 
[25] O. Wichterle, D. Lim, Nature., 185, 117-118  (1960).
 
[26] E. Caló, V.V. Khutoryanskiy, Eur. Polym. J., 65, 252-267  (2015).
 
[27] J.-P. Montheard, M. Chatzopoulos, D. Chappard, J. Macromol. Sci., Part C: Polymer Reviews, 32, 1-34  (1992).
 
[28] J.T. Jacob, 39, 13-19  (2013).
 
[29] H. Ling-Yun, Q. Lu-Yi, Energy Policy., 97, 267-275  (2016).
 
[30] H. Ozay, O. Sahin, O.K. Koc, O. Ozay, J. Ind. Eng. Chem., 43, 28-35  (2016).
 
[31] R. Ahmadi, M. Salmaniha, International Journal of New Chemistry., 1, 151-159  (2014).
 
[32] N.J. Kohrs, T. Liyanage, N. Venkatesan, A. Najarzadeh, D.A. Puleo, Drug delivery systems and controlled release., (2019).
 
[33] J. Tavakoli, Y. Tang, Polymers., 9, 364  (2017).
 
[34] Y.C. Ching, M. Ershad Ali, L.C. Abdullah, K.W. Choo, Y.C. Kuan, S.J. Julaihi, C.H. Chuah, N.-S. Liou, Cellulose., 23, 1011-1030  (2016).
 
[35] M. Ghazinezhad, A. Bozorgian, P. Gholami Dastnaei, A review of frontal polymerization in the chemical industry, International Journal of New Chemistry, 9 (2022) 285-308.
 
[36] P. Salvo, V. Dini, F. Di Francesco, M. Romanelli, Wound Medicine., 8, 15-18 (2015).
 
[37] S. Mantha, S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H.M. Pham, S.D. Tran, Materials., 12, 3323  (2019).
 
[38] R. Laurano, M. Boffito, G. Ciardelli, V. Chiono, Engineered Regeneration., 3, 182-200  (2022).
 
[39] H. Zhao, M. Liu, Y. Zhang, J. Yin, R. Pei, Nanoscale., 12, 14976-14995  (2020).
 
[40] M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, N. He, Bone research., 5 , 1-20 (2017).
 
[41] C.D. Spicer, Polymer Chemistry., 11, 184-219  (2020).
 
[42] E.M. Ahmed, J. Adv. Res., 6, 105-121  (2015).
 
[43] C.H. Lee, A. Singla, Y. Lee, Int. J. Pharm., 221, 1-22  (2001).
 
[44] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, ; Wilson, J., Hunt, T., Eds, WW Norton & Company: New York, NY, USA, (2017).
 
[45] S. Yan, T. Wang, L. Feng, J. Zhu, K. Zhang, X. Chen, L. Cui, J. Yin, Biomacromolecules., 15, 4495-4508  (2014).
 
[46] R. Dimatteo, N.J. Darling, T. Segura, Adv. Drug Deliv. Rev., 127, 167-184  (2018).
 
[47] K. Deligkaris, T.S. Tadele, W. Olthuis, A. van den Berg, Sens. Actuators B: Chem., 147, 765-774 (2010).
 
[48] K. Sano, Y. Ishida, T. Aida, Angew. Chem. Int. Ed., 57, 2532-2543  (2018).
 
[49] S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu, L.M. Stapleton, E.A. Appel, Chemical reviews., 121, 11385-11457  (2021).
 
[50] R.M. Kappel, G.J. Pruijn, Eur. J. Plast. Surg., 35, 229-233  (2012).
 
[51] S. Chen, L. Li, C. Zhao, J. Zheng, Polymer., 51, 5283-5293  (2010).
 
[52] F. Masuda, Trends in the development of superabsorbent polymers for diapers, ACS Publications (1994).
 
[53] A.M. Grumezescu, Nanostructures for the engineering of cells, tissues and organs: From design to applications, William Andrew (2018).
 
[54] S. Aswathy, U. Narendrakumar, I. Manjubala, Heliyon., 6 (2020).
 
[55] B. Ghanavati, A. Bozorgian, H.K. Esfeh, Progress in Chemical and Biochemical Research., 5 (2022).
 
[56] J.M. Heijl, F.E. Du Prez, Fast, Polymer., 45, 6771-6778  (2004).
 
[57] K.V. Kumar, K. Porkodi, J. Hazard. Mater., 138, 633-635  (2006).
 
[58] R.A. Siegel, M. Falamarzian, B.A. Firestone, B.C. Moxley, J Control Release., 8, 179-182 (1988).
 
[59] A. Gutowska, J.S. Bark, I.C. Kwon, Y.H. Bae, Y. Cha, S.W. Kim, J Control Release., 48 , 141-148 (1997).
 
[60] K. Wang, Y. Hao, Y. Wang, J. Chen, L. Mao, Y. Deng, J. Chen, S. Yuan, T. Zhang, J. Ren, Int. J. Polym. Sci., 2019, 1-14  (2019).
[61] A.S. Hoffman, Adv. Drug Deliv. Rev., 65, 10-16  (2013).
 
[62] G. Kocak, C. Tuncer, V. Bütün, Polymer Chemistry., 8, 144-176  (2017).
 
[63] Y. Yu, Y. Cheng, J. Tong, L. Zhang, Y. Wei, M. Tian, J. Mater. Chem. B., 9, 2979-2992  (2021).
 
[64] T. Okano, Y. Bae, H. Jacobs, S. Kim, J Control Release., 11, 255-265  (1990).
 
[65] H. Katono, A. Maruyama, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, J Control Release., 16, 215-227  (1991).
 
[66] K. Nasu, Theories for Photoinduced Str uctural Phase Transitions and Their Dynamics,  Photoinduced Phase Transitions, World Sci. Res.,1-69 (2004).
 
[67] W. Wei, H. Li, C. Yin, F. Tang, Drug Delivery., 27, 460-468  (2020).
 
[68] N. Yui, T. Okano, Y. Sakurai, J Control Release., 26, 141-145  (1993).
 
[69] D. Qureshi, S.K. Nayak, S. Maji, A. Anis, D. Kim, K. Pal, European Polymer Journal., 120, 109220  (2019).
 
[70] K. Sharma, B. Kaith, V. Kumar, S. Kalia, V. Kumar, H. Swart, Geoderma., 232, 45-55  (2014).
 
[71] H.N. Moghadam, A. Banaei, A. Bozorgian, Adv. J. Chem., Sect. B., 4, 144-157  (2022).
 
[72] Y. Lv, X. Xi, L. Dai, S. Tong, Z. Chen, Adv. Mater. Interfaces., 8, 2002030  (2021).
 
[73] M. Bahram, N. Mohseni, M. Moghtader, An introduction to hydrogels and some recent applications,  Emerging concepts in analysis and applications of hydrogels, IntechOpen (2016).
 
[74] T. Jamnongkan, S. Kaewpirom, J. Polym. Environ., 18, 413-421  (2010).
 
[75] V. Tolstoguzov, Food Hydrocolloids., 4, 429-468  (1991).
 
[76] J. Kopeček, Eur. J. Pharm. Sci., 20, 1-16  (2003).
 
[77] M. Klein, E. Poverenov, J. Sci. Food Agric., 100, 2337-2347  (2020).
 
[78] E. Bouyer, G. Mekhloufi, V. Rosilio, J.-L. Grossiord, F. Agnely, Int. J. Pharm., 436, 359-378  (2012).
 
[79] Z. Yang, L. Chen, D.J. McClements, C. Qiu, C. Li, Z. Zhang, M. Miao, Y. Tian, K. Zhu, Z. Jin, Food Hydrocolloids., 124, 107218  (2022).
 
[80] S. Xi, G. Chuang, C. Li, X. Yi, Progress in Chemistry., 32, 1908  (2021).
 
[81] D. Buenger, F. Topuz, J. Groll, Prog. Polym. Sci., 37, 1678-1719  (2012).
 
[82] F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Materials Science and Engineering: C., 57, 414-433  (2015).
 
[83] F. Tessarolli, A.S. Gomes, C. Mansur, S. Haider, A. Haider, Hydrogels applied for conformance-improvement treatment of oil reservoirs, Hydrogels, Haider S., Haider A.; Intechopen Limited: London, United Kingdom, 69-87 (2018).
 
[84] S.K. Patra, R. Poddar, M. Brestic, P.U. Acharjee, P. Bhattacharya, S. Sengupta, P. Pal, N. Bam, B. Biswas, V. Barek, Int. J. Polym. Sci., 2022 (2022).
 
[85] P. Kaur, R. Agrawal, F.M. Pfeffer, R. Williams, H.B. Bohidar, J. Polym. Environ., 1-18 (2023).
 
[86] M. Kaykhaii, M.R. Linford, Int J New Chem., 8, 1-15  (2021).