The Study of Substituent Effect on Osmabenzene Complexes

Document Type: Research Paper

Authors

1 Department of Chemistry, Basic Science Faculty, East Tehran Branch, Qiam Dasht, Islamic Azad University,Tehran, Iran

2 Department of Chemistry, Faculty of Basic Sciences, Islamic Azad University, Yadegar Emam Khomeini Branch, T ehran,Iran

Abstract

The electronic structure and properties of the osmaabenzenes and para substituted osmabenzenes have been explored using the hybrid density functional mpw1pw91 theory. Systematic studies on the substituent effect in para substituted osmabenzenes complexes have been studied. The following substituents were taken into consideration: H, F, CH3,OH, NH2,CN, NO2, CHO, and COOH. Basic measures of aromatic character were derived from the structure and nucleus-independent chemical shift (NICS). The NICS calculations indicate a correlation between NICS(1.5) and the hardness in  all species.   Quantum theory of atoms in molecule analysis (QTAIM) indicates a correlation between r(Os-C) bonds and the electron density of bond critical point in all species

Keywords


[1] J R Bleeke, Chem. Rev 101 (2001) 1205 – 27.

[2] L J Wright, J. Chem. Soc. Dalton Trans. (2006) 1821 – 27.

[3] G He, H Xia, G Jia, Chin. Sci. Bull 49 (2004) 1543 – 53.

[4] V Jacob, C W Landorf, L N Zakharov, T J R Weakley, M M Haley, Organometallics 28 (2009) 5183-90.

[5] C W Landorf, M l M Haley, Angew. Chem. Int. Ed. 45 (2006) 3914 – 36.

[6] G P Elliott, W R Roper, J M J Waters, Chem. Soc., Chem.Commun. (1982) 811.

[7] M A Iron, J M L Martin, M E v d Boom, J. AM. CHEM. SOC. 125 (2003) 13020-21.

[8] L Gong, Z Chen, Y i Lin, X He, T B Wen, X Xu, H.Xia, Chem. Eur. J. 15 (2009) 6258 – 66.

[9] J R Bleeke, Chem. Rev. 101 (2001) 1205-27.

[10] H E Guomei, X Haiping, J I A Guocheng, Chinese Science Bulletin  49 (2004) 1543-53.

[11] A Karton, M A Iron, M E v d Boom, J M L Martin, J. Phys. Chem. A 109 (2005) 5454-62.

[12] P M Johns, W R Roper, S D Woodgate, L J Wright, Organometallics 29 (2010) 5358–65.

[13] M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, J A Montgomery, Jr., T Vreven, K N Kudin, J C Burant, J M Millam, S S Iyengar, J Tomasi, V Barone, B Mennucci, M Cossi, G Scalmani, N Rega, G A Petersson, H Nakatsuji, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, M Klene, X Li, J E Knox, H P Hratchian, J B Cross, C Adamo, J Jaramillo, R Gomperts, R E Stratmann, O Yazyev, A J Austin, R Cammi, C Pomelli, J W Ochterski, P Y Ayala, K Morokuma, G A Voth, P Salvador, J J Dannenberg, V G Zakrzewski, S Dapprich, A D Daniels, M C Strain, O Farkas, D K Malick, A D Rabuck, K Raghavachari, J B Foresman, J V Ortiz, Q Cui, A G Baboul, S Clifford, J Cioslowski, B B Stefanov, G Liu, A Liashenko, P Piskorz, I Komaromi, R L

Martin, D J Fox, T Keith, M A Al-Laham, C Y Peng, A Nanayakkara, M Challacombe, P M W Gill, B Johnson, W Chen, M W Wong, C Gonzalez, J A Pople, Gaussian 03. Gaussian, Inc., Pittsburgh PA,, 2003.

[14] P C Hariharan, J A Pople, Theo. Chim. Acta. 28 (1973) 213.

[15] P C Hariharan, J A Pople, Mol. Phys 27 (1974) 209.

[16] P J Hay, W R Wadt, J. Chem. Phys 82 (1985) 299-310.

[17] P J Hay, W R Wadt, J. Chem. Phys 82 (1985) 284-99.

[18] A Schaefer, H Horn, R Ahlrichs, J. Chem. Phys 97 (1992 ) 2571-77.

[19] P J Hay, W R Wadt, J. Chem. Phys 82 (1985) 270-83.

[20] C Adamo, V Barone, J. Chem. Phys. 108 (1998) 664.

[21] P v R Schleyer, C Maerker, A Dransfeld, H.Jiao, N J R v E Hommes, J. Am. Chem. Soc. 118 (1996) 6317-18.

[22] M K Cyranski, T M Krygowski, M Wisiorowski, N J R Hommes, P v R Schleyer, Angew. Chem., Int. Ed. 37 (1988) 177.

[23] R F W Bader, AIM2000 Program, Hamilton, McMaster University, 2000.

[24] R G Pearson, Chemical Hardness, Wiley-VCH: Oxford, 1997.

[25] R G Parr, W Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York, 1989.

[26]  P v R Schleyer, C Maerker, A Dransfeld, H Jiao, N J R v E Hommes, J Am. Chem. Soc. 118 (1996) 6317.