Superparamagnetic core-shell metal-organic framework (Fe3O4@Ni-Co-BTC NPs): an efficient and magnetically retrievable nanostructured catalyst for the reduction of nitro compounds to amines

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

2 * Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

3 School of Chemistry, Damghan University, Damghan 36715-364, Iran

10.22034/ijnc.2022.1.5

Abstract

Herein, a highly efficient, simple, base-free, chemoselective and environmentally-benign strategy was developed for the reduction of nitro compounds using NaBH4 as a hydrogen and electron source in the presence of a bimetallic and low-cost nanocatalyst (Fe3O4@Ni-Co-BTC NPs). Thanks to inimitable structure of Fe3O4@Ni-Co-BTC NPs, this nanostructured catalyst exhibits superior catalytic performance for the reduction of a wide library of electron-donating and electron-withdrawing aromatic, heteroaromatic, heterocyclic and aliphatic nitro compounds. Interestingly, the aforesaid nanocatalyst showed high reactivity and chemoselectivity for the reduction of the nitro group in the presence of other reducible functional groups such as COOH, CHO, COCH3, CN, NHAc and OCOCH3. Furthermore, due to the superparamagnetic nature of Fe3O4@Ni-Co-BTC NPs, it could be easily separated from the reaction mixture and reused for at least seven consecutive recycle runs while its activity and selectivity was preserved. Performing the reaction at room temperature and in a green media is another notable feature of the present method.

Keywords

Main Subjects


[1] A.M. Tafesh, J. Weiguny, A., Chem. Rev., 96, 2035 (1996).
[2] T.C. Nugent, Chiral amine synthesis: methods, developments and applications, Wiley-VCH, Weinheim (2010).
[3] T. Farooqui, A.A. Farooqui, Biogenic amines: pharmacological, neurochemical and molecular aspects in the CNS, Nova Science, New York (2010).
[4] S.A. Lawrence, Amines: synthesis, properties and applications. Cambridge University Press, Cambridge (2004).
[5] G. Booth, Ullmanns encyclopedia of industrial chemistry, Wiley- VCH, Weinheim (2000).
[6] J. Hagen, Industrial catalysis: a practical approach, 2nd edn. 2006 (Wiley-VCH, Weinheim).
[7] A. Ricci, Modern amination methods, Wiley-VCH, Weinheim (2000).
[8] J. Seyden-Penne, Reductions by the alumino and borohydrides in organic synthesis, 2nd edn. Wiley-VCH, New York (1997).
[9] A.F. Abdol-Magid, K.G. Carson, B.D. Harris, C.A. Maryanoff, R.D. Shah, J. Org. Chem., 61, 3849 (1996).
[10] A.K. Shil, P. Das, Green Chem., 15, 3421 (2013).
[11] H. Zhang, Y. Zhao, W. Liu, S. Gao, N. Shang, C. Wang, Z. Wang, Catal. Commun., 59, 161 (2015).
[12] C. Liu, H. Abroshan, C. Yan, G. Li, M. Haruta, ACS Catal., 6, 92 (2016).
[13] M. Kumarraja, K. Pitchumani, App. Catal. A-Gen., 265, 135 (2004).
[14] R.V. Jagadeesh, A.E. Surkus, H. Junge, M.M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science, 342, 1073 (2013).
[15] Z. Xu, G. Lu, C. Cai, Catal. Commun., 99, 57 (2017).
[16] S. M. Kelly, B. H. Lipshutz, Org. Lett., 16, 98 (2014).
[17] C. Yu, B. Liu, L. Hu, J. Org. Chem., 66, 919 (2001).
[18] A.L. Korich, T.S. Hughes, Synlett, 16, 2602 (2007).
[19] W. Zhang, J. Xie, B. Rao, M. Luo, J. Org. Chem., 80, 3504 (2015).
[20] B. Zeynizadeh, D. Setamdideh, Synth. Commun., 36, 2699 (2006).
[21] F.A. Ramirez, A. Burger, J. Am. Chem. Soc., 72, 2781 (1950).
[22] Ö. Metin, H. Can, K. Şendil, M.S. Gültekin, J. Colloid Interface Sci., 498, 378 (2017).
[23] A. Shukla, R. K. Singha, T. Sasaki, R. Bal, Green Chem., 17, 785 (2015).
[24] S. I. El-Hout, S. M. El-Sheikh, H. M. A. Hassan, F. A. Harraz, I. A. Ibrahim, E. A. El-Sharkawy, Appl. Catal. A-Gen., 503, 176 (2015).
[25] M. Makosch, J. Sá, C. Kartusch, G. Richner, J. A. van Bokhoven, K. Hungerbühler, ChemCatChem., 4, 59 (2012).
[26] S. Chen, G. Lu, C. Cai, New J. Chem., 39, 5360 (2015).
[27] H. Mousavi,B. Zeynizadeh, R. Younesi, M. Esmati, Aust. J. Chem., 71, 595 (2018).
[28] W.G. Jia, H. Zhang, T. Zhang, D. Xie, S. Ling, E.H. Sheng, Organometallics, 35, 503 (2016).
[29] M. Gilanizadeh, B. Zeynizadeh, J. Iran. Chem. Soc., 15, 2821 (2018).
[30] M. Yuan, R. Yang, S. Wei, X. Hu, D. Xu, J. Yang, Z. Dong, J. Colloid Interface Sci., 538, 720 (2019).
[31] M.V. Parmekar, A.V. Salker, RSC Adv., 6, 108458 (2016).
[32] Y. Rangraz, F. Nemati, A. Elhampour, Appl. Surf. Sci., 507, 145 (2020).
[33] K.J. Prathap, Q. Wu, R.T. Olsson, P. Dinér, Org. Lett., 19, 4746 (2017).
[34] W.Z. Gao, Y. Xu, Y. Chen, W.F. Fu, Chem. Commun., 51, 13217 (2015).
[35] A. Baba, H. Ouahbi, A. Hassine, J. Sebti, L. Laasri, S. Sebti, Mediterr. J. Chem., 7, 317 (2018).
[36] Y. Qihua, J. Chen, Y. Yao, J. Zhao, Y. Zhao, Y. Zheng, M. Li, RSC Adv., 6, 96203 (2016).
[37] H. Miao, K. Ma, H. Zhu, K. Yin, Y. Zhang, Y. Cui, RSC Adv., 9, 14580 (2019).
[38] R. Lopes, M.M. Pereira, B. Royo, ChemCatChem, 9, 3073 (2017).
[39] R. Gao, H. Guo, B. Wang, P. Qiu, M. Sun L. Chen, Appl. Catal. A-Gen., 579, 99 (2019).
[40] G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller, J. Am. Chem. Soc., 133, 12875 (2011).
[41] S. Xu, D. Yu, S. Liao, T. Ye, H. Sheng, RSC Adv., 6, 96431 (2016).
[42] Q. Tang, Z. Yuan, S. Jin, K. Yao, H. Yang, Q. Chi, B. Liu, React. Chem. Eng., 5, 58 (2020).
[43] X. Cui, Q. Zhang, M. Tian, Z. Dong, New J. Chem., 41, 10165 (2017).
[44] P. Baumeister, H.U. Blaser, M. Studer, Catal. Lett., 49, 219 (1997).
[45] H. Miao, S. Hu, K. Ma, L. Sun, F. Wu, H. Wang, H. Li, Catal. Commun., 109, 33 (2018).
[46] R. Yun, L. Hong, W. Ma, W. Jia, S. Liu, B. Zheng, ChemCatChem, 11, 724 (2019).
[47] C.D. Chudasama, D.K. Vyas, S. Agrahari, P.D. Patel, V.Sh. Lande, G. Kalpana, R. Jasra, Current Nanomaterials, 3, 114 (2018).
[48] R. Kaur, M. Chhibber, P. Mahata, S.K. Mittal, ChemistrySelect, 3, 3417 (2018).
[49] W. Feng, T. Huang, L. Gao, X. Yang, W. Deng, R. Zhou, H. Liu, RSC Adv., 8, 6288 (2018).
[50] M.S. Thakur, O.S. Nayal, R. Rana, M. Kumar, S. Sharma, N. Kumar, S.K. Maurya, New J. Chem., 42, 1373 (2018).
[51] S. Cheng, X. Meng, N. Shang, S. Gao, C. Feng, C. Wang, Z. Wang, New J. Chem., 42, 1771 (20185).
[52] N. Anbu, C. Vijayan, A. Dhakshinamoorthy, ChemistrySelect, 4, 1379 (2019).
[53] P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Coord. Chem. Rev., 287, 114 (2015).
[54] S. Doherty, J.G. Knight, T. Backhouse, A. Bradford, F. Saunders, R.A. Bourne, T.W. Chamberlain, R. Stones, A. Clayton, K. Lovelock, Catal. Sci. Technol., 8, 1454 (2018).
[55] J. Li, C.Y. Liu, Y. Liu, J. Mater. Chem., 22, 8426 (2012).
[56] J. Sun, Y. Fu, G. He, X. Sun, X. Wang, Catal. Sci. Technol., 4, 1742 (2014).
[57] P. Lara, K. Philippot, Catal, Sci. Technol., 4, 2445 (2014).
[58] A. Corma, P. Serna, Science, 313, 332 (2006).
[59] S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. Guo, M. Ballauff, Y. Lu, Angew. Chem. Int. Ed., 51, 2229 (2012).
[60] A. Mohammadinezhad, B. Akhlaghinia, Catal. Lett., 150, 332 (2020).
[61] A. Mohammadinezhad, B. Akhlaghinia, ChemistrySelect, 4, 12455 (2019).
[62] N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed., 45, 4737 (2019).
[63] B. Akhlaghinia, P.Sanati, A.Mohammadinezhad, Z. Zarei, Res. Chem. Intermed., 45, 3215 (2019).
[64] S.S.E. Ghodsinia, B.Akhlaghinia, Green Chem., 21, 3029 (2019).
[65] M.S. Ghasemzadeh, B. Akhlaghinia, New J. Chem., 43, 5341 (2019).
[66] M.S. Ghasemzadeh, B. Akhlaghinia, ChemistrySelect, 4, 1542 (2019).
[67] M.S. Ghasemzadeh, B. Akhlaghinia, ChemistrySelect, 3, 3161 (2018).
[68] R. Jahanshahi, B. Akhlaghinia, Res. Chem. Intermed., 44, 2451 (2018).
[69] N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed., 44, 1085 (2018).
[70] A. Mohammadinezhad, B. Akhlaghinia, Green Chem., 19, 5625 (2017).
[71] R. Jahanshahi, B. Akhlaghinia, Catal. Lett., 147, 2640 (2017).
[72] Z. Zarei, B. Akhlaghinia, RSC Adv., 6, 106473 (2016).
[73] S.N. Razavi, B. Akhlaghinia, New J. Chem., 40, 447 (2016).
[74] S. Rezazadeh, B. Akhlaghinia, E. K.Goharshadi, H. Sarvari, J. Chin. Chem. Soc., 61, 1108 (2014).
[75] A. Mohammadinezhad, B. Akhlaghinia, Catal. Lett., 17 (2020).
[76] R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, V.S. Varma, M.B Gawande, Green Chem., 18, 3184 (2016).
[77] K. Layek, M.L. Kantam, M. Shirai, D. Nishio-hamane, T. Sasaki, H. Maheswaran, Green Chem., 14, 3164 (2012).
[78] A.K. Jain, V.K. Gupta, A. Bhatnagar, Sep. Sci. Technol., 38, 463 (2003).
[79] V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A Barakat, Adv Colloid Interface Sci., 193, 24 (2013).
[80] H. Khani, M.K. Rofouei, P. Arab, V.K. Gupta, Z. Vafaei, J. Hazard. Mater., 183, 402 (2010).
[81] V.K. Gupta, T.A. Saleh, Environ. Sci. Pollut. Res., 20, 2828 (2013).
[82] A. Chinnappan, S. Kholghi Eshkalak, C. Baskar, M. Khatibzadeh, E. Kowsari, S. Ramakrishna, Nanoscale Adv., 1, 305 (2019).
[83] S. Keshipour, S.S. Mirmasoudi, AET, 3, 59 (2017).
[84] M. Azaroon, A.R. Kiasat, Catal. Lett., 148, 745 (2018).
[85] S. Yang, Z.H. Zhang, Q. Chen, M.Y. He, L. Wang, Appl. Organomet. Chem., 32, 4132 (2018).
[86] P. Eghbali, B. Nişancı, Ö. Metin, Pure Appl Chem., 90, 327 (2018).
[87] J. Pitchaimani, N. Gunasekaran, S.P. Anthony, D. Moon, V. Madhu, Appl. Organomet.
Chem., 33, 4689 (2019).
[88] J. Zhang, G. Lu, C. Cai, Catal. Commun., 84, 25 (2016).
[89] C.K.P. Neeli, P. Puthiaraj, Y.R. Lee, Y.M. Chung, S.H. Baeck, W.S. Ahn, Catal. Today, 303, 227 (2018).
[90] P.L. Reddy, M. Tripathi, R. Arundhathi, D.S. Rawat, Chem. Asian J., 12, 785 (2017).
[91] M. Yuan, H. Zhang, C. Yang, F. Wang, Z. Dong, ChemCatChem, 11, 3327 (2019).
[92] Y. Duan, T. Song, X. Dong, Y. Yang, Green Chem., 20, 2821 (2018).