ISC, DOAJ, CAS, Google Scholar......

Document Type : Research Paper

Authors

1 Department of Chemistry, College of Basic Sciences, Yadegar-e- Imam Khomeini (RAH) Shahre Ray Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

Abstract

An efficient and rapid fabrication procedure for ZIF-8 crystals through ultrasonic assisted strategy (30min) was reported. Additionally, the crystallinity, morphology, chemical bonding, and porosity of ZIF-8 were fully characterized by XRD, and FT-IR. The Response surface methodology approach was established to optimize a series of adsorption conditions: initial concentration (10–400 mg/L), dose (0.02–1 g/L), and time (20–60 min) for Red 141 and Violet-5r removals. Particularly, plausible adsorption mechanisms (electrostatic interactions and π–π stacking) were elucidated, and isotherm models were rigorously studied by three-parameter equations (Langmuir, Freundlich, Tempkin). The adsorption isotherm data showed the adsorption of reactive dyes by ZIF-8, was consistent with the Langmuir isotherm model. The kinetics parameters were in accord with the pseudo-second-order equation, which implied that the adsorption rate was mainly controlled by the chemisorption mechanism. Through advantageous effectiveness involving good reusability (4 recycles), and maximum adsorption capacities (250-200 mg/g), it is recommendable to utilize ZIF-8 as a good adsorbent for the dyes remediation.

Keywords

Main Subjects

[1] J. An, H. Chen, S. Wei, J. Gu, Environ. Earth Sci., 74, 5077 (2015).
[2] A.K. Mishra, Sol-Gel Based Nanoceramic Materials: Preparation, Properties and Applications, (2016).
[3] A.G. Tafti, A. Rashidi, M.E. Yazdanshenas.,8, 515 (2021).
[4] M. Mozafarjalali, M. Hajiani, A. Haji, Int. J. New Chem., 7, 111 (2020).
[5] N. Tara, S.I. Siddiqui, G. Rathi, S.A. Chaudhry, Inamuddin, A.M. Asiri, Curr. Anal. Chem., 16, 14 (2019).
[6] M.P. Foroush, R. Ahmadi, M. Yousefi, J. Najafpour, South African J. Chem. Eng., 37, 135 (2021).
[7] A. Sharma, Z. Syed, U. Brighu, A.B. Gupta, C. Ram, J. Clean. Prod., 220, 23 (2019).
[8] W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, J. Colloid Interface Sci., 496,  188 (2017).
[9] R.A. Rashid, M.A. Mohd, Kasim Mohammed Hello, Sci. Lett., 12, 301 (2018).
[10] A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, J. Taibah Univ. Sci., 10, 352 (2016).
[11] P. V. Nidheesh, M. Zhou, M.A. Oturan, Chemosphere., 197, 210 (2018).
[12] N. de C.L. Beluci, G.A.P. Mateus, C.S. Miyashiro, N.C. Homem, R.G. Gomes, M.R. Fagundes-Klen, R. Bergamasco, A.M.S. Vieira, Sci. Total Environ., 664, 222 (2019).
[13] M. Ahmadi, M. Hazrati Niari, B. Kakavandi, J. Mol. Liq., 248, 184 (2017).
[14] M. Ahmadi, M. Foladivanda, N. Jaafarzadeh, Z. Ramezani, B. Ramavandi, S. Jorfi, B. Kakavandi, J. Water Supply Res. Technol. - AQUA., 66, 116 (2017).
[15] B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam, S. Jorfi, J. Taiwan Inst. Chem. Eng., 96,  329 (2019).
[16] M. Kermani, H. Izanloo, R.R. Kalantary, H.S. Barzaki, B. Kakavandi, Desalin. Water Treat., 80, 357 (2017).
[17] N.H. Abdullah, K. Shameli, E.C. Abdullah, L.C. Abdullah, Compos. Part B Eng., 162, 538 (2019).
[18] I. Ahmed, S.H. Jhung, Mater., Today 17, 136  (2014).
[19] O.M. Zhou, H. C., Long, J. R., & Yaghi, Chem. Rev., 112, 673 (2012).
[20] J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev.,112, 869  (2012).
[21] S.K. Nune, P.K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, G.J. Exarhos, Chem. Commun., 46, 4878 (2010).
[22] H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, J. Am. Chem. Soc., 131, 16000 (2009).
[23] G. Lu, J.T. Hupp, J. Am. Chem. Soc., 132, 7832 (2010).
[24] A.N. Ökte, D. Karamanis, E. Chalkia, D. Tuncel, Mater. Chem. Phys., 187, 5  (2017).
[25] J.Q. Jiang, C.X. Yang, X.P. Yan, ACS Appl. Mater., Interfaces 5, 9837 (2013).
[26] K.Y.A. Lin, Y.C. Chen, S. Phattarapattamawong, J. Colloid Interface Sci., 478, 97 (2016).
[27] S. Wuttke, S. Braig, T. Preiß, A. Zimpel, J. Sicklinger, C. Bellomo, J.O. Rädler, A.M. Vollmar, T. Bein, Chem. Commun., 51, 15752 (2015).
[28] T.-T. Han, H.-L. Bai, Y.-Y. Liu, J.-F. Ma, New J. Chem.,42, 717 (2018).
[29] Y. Li, K. Zhou, M. He, J. Yao, Microporous Mesoporous Mater., 234, 287 (2016).
[30] R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang, P. Xu, J. Ma, H. Zhao, X. Han, J. Alloys Compd., 681, 384 (2016).
[31] S. Tanaka, K. Fujita, Y. Miyake, M. Miyamoto, Y. Hasegawa, T. Makino, S. Van Der Perre, J. Cousin Saint Remi, T. Van Assche, G. V. Baron, J.F.M. Denayer, J. Phys. Chem., C 119,  28430 (2015).
[32] M. Adnan, K. Li, L. Xu, Y. Yan., Catalysts 8 (2018).
[33] E.R. Alley., Environment 1., 32, 191 (2007).
[34] N.M. Mahmoodi, J. Abdi, F. Najafi, J. Colloid Interface Sci., 400, 88 (2013).
[35] K.-Y. Andrew Lin, W.-D. Lee, Chem. Eng. J., 284, 1017 (2016).
[36] G.E. do Nascimento, M.M.M.B. Duarte, N.F. Campos, O.R.S. da Rocha, V.L. da Silva, Environ. Technol., 35, 1436 (2014).
[37] J. Mouldar, B. Hatimi, H. Hafdi, M. Joudi, M.E.A. Belghiti, H. Nasrellah, M.A. El Mhammedi, L. El Gaini, M. Bakasse, Water, Air, Soil Pollut., 231, 205 (2020).
[38] J. Mouldar, B. Hatimi, H. Hafdi, M. Joudi, M.E.A. Belghiti, H. Nasrellah, M.A. El Mhammedi, L. El Gaini, M. Bakasse, Water, Air, Soil Pollut.,231, 205 (2020).
[39] T.H. Nazifa, N. Habba, Salmiati, A. Aris, T. Hadibarata, J. Chinese Chem. Soc., 65, 259 (2018).
[40] A. El Nemr, J. Hazard. Mater., 161, 132 (2009).
[41] M. Ghaedi, A.M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, J. Ind. Eng. Chem., 20, 1793 (2014).