Adsorption of Pyridine by Using BeO Nanotube: A DFT Study

Document Type: Research Paper

Authors

1 Department of Chemistry, College of chemistry, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, College of chemistry,Malek Ashtar University of Technology

3 Department of Chemistry, College of Chemical Engineering , Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Abstract

Abstract:
Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C5H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyridine on the pristine nanotubes is   a bout -73.29kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorption energy changed . Calculation showed that when the nanotube is doping by P, the adsorption energy is about -39.59kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly (Eg=2.55Ev). The BeONT doped with P is suitable semiconductor than the pristine BeONT

Keywords


[1]. G. D. Henry, Do novo synthesis of substituted pyridines, Tetrahedron 60 (2004) 6043-6061                
[2]. D. H. Lataye, I. M. Mishra, I. D. Mall, Removal of pyridine from aqueous solution by adsorption on bagasse fly ash, Ind, Eng. Chem. Res. 42(2006)3934-3943.                          
[3]. D. Mohan. K. P. Singh, S. Sinha, D. Gosh, Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials, Carbon42(2004)2409-2421.
[4]. S.Iijima, Science of Fullerenes and carbon nanotubes, Nature354, 56(1991).
[5]. G.Hummer,Water, protonund iontransport:from nanotubes to proteins, Mol.Phys. 105,201 (2007).
[6]. B.E. Zhu,Z.Y. Pan,M.Hou,D.Cheng,andY.X.Wang Melting behavior of gold nanowires in carbon,Mol.Phys.109,527(2011).
[7]. F.R. Hung, G. Dudziak, M. Sliwinska-Barthkowiak, and K.E.Gubbins,Freezing/melting behavior within carbon nanotubes. Mol.Phys.102,223 (2004).                                                         
 [8].D.W.H. Fam, Al. Palaniappan, A.I.Y. Tok, B.Liedberg, and S.M.Moochhala,Sens. Areview on technological aspects in fluencingcommercializatior of carbon nanotube sensors. Actuators B: Chem.157,I (2011)                              
[9].I.Cabria, M.J.Lopez, and J.A.Alonso, Comp. Mater. Density Functional calculations of hydrogen adsorption on boron nanotubes and boron  sheets. Sci.35, 238 (2006).                                                                                  
 [10]. V. Tondare, C. Balasubramanian, S. Shende, D. Joag, V. Godbole, S. Bhoraskar, M. Bhadhade, Appl. Phys. Lett. 80, 4813 (2002).                                                                
[11]. N. Hamada, S. I. Sawada, A. Oshiyama, Phys. Rev. Lett . 68,  1579 (1992).
[12]. A. Ahmadi, N. L. Hadipour, M. Kamfiroozi, Z. Bagheri, Sens. Actuators B Chem. 161, 1025 (2012).
[13]. M.Moghimi,M.T.Baei, nanostructures study of chemisorptions of O2 molecule on Al(100) surface,Journal of Saudi chemical society, 37(2012)45-53.
[14]. A. A. Peyghan, S. Yourdkhani, M.Noei, Working Mechanism of a BC3 Nanotube Carbon Monoxide Gas Sensor, Commun. Theor. Phys, 60 (2013)138-145.
[15]. J.Beheshtian,M.Noei,H.Soleymanabadi,A.A.Peyghan,Aamonia monitoring by carbon nitride nanotubes:A density functional study,Thin solid films ,534(2013) 650-654.
[16]. M.Noei,A.A.Salari,N.Ahmadaghaei,Z.Bagheri,A.A.Peyghan, DFT study of the dissociative adsorption of HF  on an AlN nanotube,C.R.Chimie, 1 74(2013) 235-244.
[17]. M. Ouyang, J. Hang,and C.M.Lieber, STM studies of single-walled carbon nanotubes.Acc. Chem . Res.  351081 (2002).      
[18]. C.L.Kane,  and E.J.Mele,Vibrational effects in the linear conductance of carbon nanotubes. Phys. Rev.Lett, 78:1932 (1997).     
[19] .J. Beheshtian, A.A. Peygan, and Z.Bagheri, Appl. Surf. Electronic Respone of nano-sized cages of Zno and Mgo to  presence  of Nitric oxide. Sci259.  631 (2012).                                                                                                               
[20]. F.J. Owens, Increasing the B/N ratio in boron nitride nanoribbons a possible approach dilute magnetic semiconductors. Mol.  Phys. 1090 1527 (2011).                                                                
  A.A. Fokin and P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol.Phys.107, 823 (2009). 
M.Schmidt et al,general atomic and molecular electronic structure [20].system,J.Comput.Chem,14(1993).
[21]. S.Li, Energy bond theory for crystalline solids. Semiconductor Physical Electronics, 2nde,  Springer.USA, (2006).